Files
OCR/openspec/changes/add-layout-preprocessing/design.md
egg 06a5973f2e proposal: add hybrid control mode with auto-detection and preview
Updates add-layout-preprocessing proposal:
- Auto mode: analyze image quality, auto-select parameters
- Manual mode: user override with specific settings
- Preview API: compare original vs preprocessed before processing
- Frontend UI: mode selection, manual controls, preview button

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-27 14:31:09 +08:00

193 lines
6.1 KiB
Markdown

# Design: Layout Detection Image Preprocessing
## Context
PP-StructureV3's layout detection model (PP-DocLayout_plus-L) sometimes fails to detect tables with faint lines or low contrast. This is a preprocessing problem - the model can detect tables when lines are clearly visible, but struggles with poor quality scans or documents with light-colored borders.
### Current Flow
```
Original Image → PP-Structure (layout detection) → Element Recognition
Returns element bboxes
Image extraction crops from original
```
### Proposed Flow
```
Original Image → Preprocess → PP-Structure (layout detection) → Element Recognition
Returns element bboxes
Original Image ← ← ← ← Image extraction crops from original (NOT preprocessed)
```
## Goals / Non-Goals
### Goals
- Improve table detection for documents with faint lines
- Preserve original image quality for element extraction
- **Hybrid control**: Auto mode by default, manual override available
- **Preview capability**: Users can verify preprocessing before processing
- Minimal performance impact
### Non-Goals
- Preprocessing for text recognition (Raw OCR handles this separately)
- Modifying how PP-Structure internally processes images
- General image quality improvement (out of scope)
- Real-time preview during processing (preview is pre-processing only)
## Decisions
### Decision 1: Preprocess only for layout detection input
**Rationale**:
- Layout detection needs enhanced edges/contrast to identify regions
- Image element extraction needs original quality for output
- Raw OCR text recognition works independently and doesn't need preprocessing
### Decision 2: Use CLAHE (Contrast Limited Adaptive Histogram Equalization) as default
**Rationale**:
- CLAHE prevents over-amplification in already bright areas
- Adaptive nature handles varying background regions
- Well-supported by OpenCV
**Alternatives considered**:
- Global histogram equalization: Too aggressive, causes artifacts
- Manual brightness/contrast: Not adaptive to document variations
### Decision 3: Preprocessing is applied in-memory, not saved to disk
**Rationale**:
- Preprocessed image is only needed during PP-Structure call
- Saving would increase storage and I/O overhead
- Original image is already saved and used for extraction
### Decision 4: Sharpening via Unsharp Mask
**Rationale**:
- Enhances edges without introducing noise
- Helps make faint table borders more detectable
- Configurable strength
### Decision 5: Hybrid Control Mode (Auto + Manual)
**Rationale**:
- Auto mode provides seamless experience for most users
- Manual mode gives power users fine control
- Preview allows verification before committing to processing
**Auto-detection algorithm**:
```python
def analyze_image_quality(image: np.ndarray) -> dict:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Contrast: standard deviation of pixel values
contrast = np.std(gray)
# Edge strength: mean of Sobel gradient magnitude
sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
edge_strength = np.mean(np.sqrt(sobel_x**2 + sobel_y**2))
return {
"contrast": contrast,
"edge_strength": edge_strength,
"recommended": {
"contrast": "clahe" if contrast < 40 else "none",
"sharpen": edge_strength < 15,
"binarize": contrast < 20
}
}
```
### Decision 6: Preview API Design
**Rationale**:
- Users should see preprocessing effect before full processing
- Reduces trial-and-error cycles
- Builds user confidence in the system
**API Design**:
```
POST /api/v2/tasks/{task_id}/preview/preprocessing
Request:
{
"page": 1,
"mode": "auto", // or "manual"
"config": { // only for manual mode
"contrast": "clahe",
"sharpen": true,
"binarize": false
}
}
Response:
{
"original_url": "/api/v2/tasks/{id}/pages/1/image",
"preprocessed_url": "/api/v2/tasks/{id}/pages/1/image?preprocessed=true",
"quality_metrics": {
"contrast": 35.2,
"edge_strength": 12.8
},
"auto_config": {
"contrast": "clahe",
"sharpen": true,
"binarize": false
}
}
```
## Implementation Details
### Preprocessing Pipeline
```python
def enhance_for_layout_detection(image: Image.Image, config: Settings) -> Image.Image:
"""Enhance image for better layout detection."""
# Step 1: Contrast enhancement
if config.layout_preprocessing_contrast == "clahe":
image = apply_clahe(image)
elif config.layout_preprocessing_contrast == "histogram":
image = apply_histogram_equalization(image)
# Step 2: Sharpening (optional)
if config.layout_preprocessing_sharpen:
image = apply_unsharp_mask(image)
# Step 3: Binarization (optional, aggressive)
if config.layout_preprocessing_binarize:
image = apply_adaptive_threshold(image)
return image
```
### Integration Point
```python
# In ocr_service.py, before calling PP-Structure
if settings.layout_preprocessing_enabled:
preprocessed_image = enhance_for_layout_detection(page_image, settings)
pp_input = preprocessed_image
else:
pp_input = page_image
# PP-Structure gets preprocessed (or original if disabled)
layout_results = self.structure_engine(pp_input)
# Image extraction still uses original
for element in layout_results:
if element.type == "image":
crop_image_from_original(page_image, element.bbox) # Use original!
```
## Risks / Trade-offs
| Risk | Mitigation |
|------|------------|
| Performance overhead | Preprocessing is fast (~50ms/page), enable/disable option |
| Over-enhancement artifacts | CLAHE clip limit prevents over-saturation, configurable |
| Memory spike for large images | Process one page at a time, discard preprocessed after use |
## Open Questions
1. Should binarization be applied before or after CLAHE?
- Current: After (enhances contrast first, then binarize if needed)
2. Should preprocessing parameters be tunable per-request or only server-wide?
- Current: Server-wide config only (simpler)