Files
OCR/openspec/changes/enhance-memory-management/design.md
egg 1afdb822c3 feat: implement hybrid image extraction and memory management
Backend:
- Add hybrid image extraction for Direct track (inline image blocks)
- Add render_inline_image_regions() fallback when OCR doesn't find images
- Add check_document_for_missing_images() for detecting missing images
- Add memory management system (MemoryGuard, ModelManager, ServicePool)
- Update pdf_generator_service to handle HYBRID processing track
- Add ElementType.LOGO for logo extraction

Frontend:
- Fix PDF viewer re-rendering issues with memoization
- Add TaskNotFound component and useTaskValidation hook
- Disable StrictMode due to react-pdf incompatibility
- Fix task detail and results page loading states

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-26 10:56:22 +08:00

587 lines
21 KiB
Markdown

# Design Document: Enhanced Memory Management
## Architecture Overview
The enhanced memory management system introduces three core components that work together to prevent OOM crashes and optimize resource utilization:
```
┌─────────────────────────────────────────────────────────────┐
│ Task Router │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ Request → Queue → Acquire Service → Process → Release │ │
│ └──────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ OCRServicePool │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │Service 1│ │Service 2│ │Service 3│ │Service 4│ │
│ │ GPU:0 │ │ GPU:0 │ │ GPU:1 │ │ CPU │ │
│ └─────────┘ └─────────┘ └─────────┘ └─────────┘ │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ ModelManager │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ Models: {id → (instance, ref_count, last_used)} │ │
│ │ Timeout Monitor → Unload Idle Models │ │
│ └──────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ MemoryGuard │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ Monitor: GPU/CPU Memory Usage │ │
│ │ Actions: Warn → Throttle → Fallback → Emergency │ │
│ └──────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
```
## Component Design
### 1. ModelManager
**Purpose**: Centralized model lifecycle management with reference counting and idle timeout.
**Key Design Decisions**:
- **Singleton Pattern**: One ModelManager instance per application
- **Reference Counting**: Track active users of each model
- **LRU Cache**: Evict least recently used models when memory pressure
- **Lazy Loading**: Load models only when first requested
**Implementation**:
```python
class ModelManager:
def __init__(self, config: ModelConfig):
self.models: Dict[str, ModelEntry] = {}
self.lock = asyncio.Lock()
self.config = config
self._start_timeout_monitor()
async def load_model(self, model_id: str, params: Dict) -> Model:
async with self.lock:
if model_id in self.models:
entry = self.models[model_id]
entry.ref_count += 1
entry.last_used = time.time()
return entry.model
# Check memory before loading
if not await self.memory_guard.check_memory(params['estimated_memory']):
await self._evict_idle_models()
model = await self._create_model(model_id, params)
self.models[model_id] = ModelEntry(
model=model,
ref_count=1,
last_used=time.time()
)
return model
```
### 2. OCRServicePool
**Purpose**: Manage a pool of OCRService instances to prevent duplicate model loading.
**Key Design Decisions**:
- **Per-Device Pools**: Separate pool for each GPU/CPU device
- **Semaphore Control**: Limit concurrent usage per service
- **Queue Management**: FIFO queue with timeout for waiting requests
- **Health Monitoring**: Periodic health checks on pooled services
**Implementation**:
```python
class OCRServicePool:
def __init__(self, config: PoolConfig):
self.pools: Dict[str, List[OCRService]] = {}
self.semaphores: Dict[str, asyncio.Semaphore] = {}
self.queues: Dict[str, asyncio.Queue] = {}
self._initialize_pools()
async def acquire(self, device: str = "GPU:0") -> OCRService:
# Try to get from pool
if device in self.pools and self.pools[device]:
for service in self.pools[device]:
if await service.try_acquire():
return service
# Queue if pool exhausted
return await self._wait_for_service(device)
```
### 3. MemoryGuard
**Purpose**: Monitor memory usage and trigger preventive actions.
**Key Design Decisions**:
- **Multi-Backend Support**: paddle.device.cuda, pynvml, torch as fallbacks
- **Threshold System**: Warning (80%), Critical (95%), Emergency (98%)
- **Predictive Allocation**: Estimate memory before operations
- **Progressive Actions**: Warn → Throttle → CPU Fallback → Reject
**Implementation**:
```python
class MemoryGuard:
def __init__(self, config: MemoryConfig):
self.config = config
self.backend = self._detect_backend()
self._start_monitor()
async def check_memory(self, required_mb: int = 0) -> bool:
stats = await self.get_memory_stats()
available = stats['gpu_free_mb']
if available < required_mb:
return False
usage_ratio = stats['gpu_used_ratio']
if usage_ratio > self.config.critical_threshold:
await self._trigger_emergency_cleanup()
return False
if usage_ratio > self.config.warning_threshold:
await self._trigger_warning()
return True
```
## Memory Optimization Strategies
### 1. PP-StructureV3 Specific Optimizations
**Problem**: PP-StructureV3 is permanently exempted from unloading (lines 255-267).
**Solution**:
```python
# Remove exemption
def should_unload_model(model_id: str) -> bool:
# Old: if model_id == "ppstructure_v3": return False
# New: Apply same rules to all models
return True
# Add proper cleanup
def unload_ppstructure_v3(engine: PPStructureV3):
engine.table_engine = None
engine.text_detector = None
engine.text_recognizer = None
paddle.device.cuda.empty_cache()
```
### 2. Batch Processing for Large Documents
**Strategy**: Process documents in configurable batches to limit memory usage.
```python
async def process_large_document(doc_path: Path, batch_size: int = 10):
total_pages = get_page_count(doc_path)
for start_idx in range(0, total_pages, batch_size):
end_idx = min(start_idx + batch_size, total_pages)
# Process batch
batch_results = await process_pages(doc_path, start_idx, end_idx)
# Force cleanup between batches
paddle.device.cuda.empty_cache()
gc.collect()
yield batch_results
```
### 3. Selective Feature Disabling
**Strategy**: Allow disabling memory-intensive features when under pressure.
```python
class AdaptiveProcessing:
def __init__(self):
self.features = {
'charts': True,
'formulas': True,
'tables': True,
'layout': True
}
async def adapt_to_memory(self, available_mb: int):
if available_mb < 1000:
self.features['charts'] = False
self.features['formulas'] = False
if available_mb < 500:
self.features['tables'] = False
```
## Concurrency Management
### 1. Semaphore-Based Limiting
```python
# Global semaphores
prediction_semaphore = asyncio.Semaphore(2) # Max 2 concurrent predictions
processing_semaphore = asyncio.Semaphore(4) # Max 4 concurrent OCR tasks
async def predict_with_structure(image, params=None):
async with prediction_semaphore:
# Memory check before prediction
required_mb = estimate_prediction_memory(image.shape)
if not await memory_guard.check_memory(required_mb):
raise MemoryError("Insufficient memory for prediction")
return await pp_structure.predict(image, params)
```
### 2. Queue-Based Task Distribution
```python
class TaskDistributor:
def __init__(self):
self.queues = {
'high': asyncio.Queue(maxsize=10),
'normal': asyncio.Queue(maxsize=50),
'low': asyncio.Queue(maxsize=100)
}
async def distribute_task(self, task: Task):
priority = self._calculate_priority(task)
queue = self.queues[priority]
try:
await asyncio.wait_for(
queue.put(task),
timeout=self.config.queue_timeout
)
except asyncio.TimeoutError:
raise QueueFullError(f"Queue {priority} is full")
```
## Monitoring and Metrics
### 1. Memory Metrics Collection
```python
class MemoryMetrics:
def __init__(self):
self.history = deque(maxlen=1000)
self.alerts = []
async def collect(self):
stats = {
'timestamp': time.time(),
'gpu_used_mb': get_gpu_memory_used(),
'gpu_free_mb': get_gpu_memory_free(),
'cpu_used_mb': get_cpu_memory_used(),
'models_loaded': len(model_manager.models),
'active_tasks': len(active_tasks),
'pool_utilization': get_pool_utilization()
}
self.history.append(stats)
await self._check_alerts(stats)
```
### 2. Monitoring Dashboard Endpoints
```python
@router.get("/admin/memory/stats")
async def get_memory_stats():
return {
'current': memory_metrics.get_current(),
'history': memory_metrics.get_history(minutes=5),
'alerts': memory_metrics.get_active_alerts(),
'recommendations': memory_optimizer.get_recommendations()
}
@router.post("/admin/memory/gc")
async def trigger_garbage_collection():
"""Manual garbage collection trigger"""
results = await memory_manager.force_cleanup()
return {'freed_mb': results['freed'], 'models_unloaded': results['models']}
```
## Error Recovery
### 1. OOM Recovery Strategy
```python
class OOMRecovery:
async def recover(self, error: Exception, task: Task):
logger.error(f"OOM detected for task {task.id}: {error}")
# Step 1: Emergency cleanup
await self.emergency_cleanup()
# Step 2: Try CPU fallback
if self.config.enable_cpu_fallback:
task.device = "CPU"
return await self.retry_on_cpu(task)
# Step 3: Reduce batch size and retry
if task.batch_size > 1:
task.batch_size = max(1, task.batch_size // 2)
return await self.retry_with_reduced_batch(task)
# Step 4: Fail gracefully
await self.mark_task_failed(task, "Insufficient memory")
```
### 2. Service Recovery
```python
class ServiceRecovery:
async def restart_service(self, service_id: str):
"""Restart a failed service"""
# Kill existing process
await self.kill_service_process(service_id)
# Clear service memory
await self.clear_service_cache(service_id)
# Restart with fresh state
new_service = await self.create_service(service_id)
await self.pool.replace_service(service_id, new_service)
```
## Testing Strategy
### 1. Memory Leak Detection
```python
@pytest.mark.memory
async def test_no_memory_leak():
initial_memory = get_memory_usage()
# Process 100 tasks
for _ in range(100):
task = create_test_task()
await process_task(task)
# Force cleanup
await cleanup_all()
gc.collect()
final_memory = get_memory_usage()
leak = final_memory - initial_memory
assert leak < 100 # Max 100MB leak tolerance
```
### 2. Stress Testing
```python
@pytest.mark.stress
async def test_concurrent_load():
tasks = [create_large_task() for _ in range(50)]
# Should handle gracefully without OOM
results = await asyncio.gather(
*[process_task(t) for t in tasks],
return_exceptions=True
)
# Some may fail but system should remain stable
successful = sum(1 for r in results if not isinstance(r, Exception))
assert successful > 0
assert await health_check() == "healthy"
```
## Performance Targets
| Metric | Current | Target | Improvement |
|--------|---------|---------|------------|
| Memory per task | 2-4 GB | 0.5-1 GB | 75% reduction |
| Concurrent tasks | 1-2 | 4-8 | 4x increase |
| Model load time | 30-60s | 5-10s (cached) | 6x faster |
| OOM crashes/day | 5-10 | 0-1 | 90% reduction |
| Service uptime | 4-8 hours | 24+ hours | 3x improvement |
## Rollout Plan
### Phase 1: Foundation (Week 1)
- Implement ModelManager
- Integrate with existing OCRService
- Add basic memory monitoring
### Phase 2: Pooling (Week 2)
- Implement OCRServicePool
- Update task router
- Add concurrency limits
### Phase 3: Optimization (Week 3)
- Add MemoryGuard
- Implement adaptive processing
- Add batch processing
### Phase 4: Hardening (Week 4)
- Stress testing
- Performance tuning
- Documentation and monitoring
## Configuration Settings Reference
All memory management settings are defined in `backend/app/core/config.py` under the `Settings` class.
### Memory Thresholds
| Setting | Type | Default | Description |
|---------|------|---------|-------------|
| `memory_warning_threshold` | float | 0.80 | GPU memory usage ratio (0-1) to trigger warning alerts |
| `memory_critical_threshold` | float | 0.95 | GPU memory ratio to start throttling operations |
| `memory_emergency_threshold` | float | 0.98 | GPU memory ratio to trigger emergency cleanup |
### Memory Monitoring
| Setting | Type | Default | Description |
|---------|------|---------|-------------|
| `memory_check_interval_seconds` | int | 30 | Background check interval for memory monitoring |
| `enable_memory_alerts` | bool | True | Enable/disable memory threshold alerts |
| `gpu_memory_limit_mb` | int | 6144 | Maximum GPU memory to use (MB) |
| `gpu_memory_reserve_mb` | int | 512 | Memory reserved for CUDA overhead |
### Model Lifecycle Management
| Setting | Type | Default | Description |
|---------|------|---------|-------------|
| `enable_model_lifecycle_management` | bool | True | Use ModelManager for model lifecycle |
| `model_idle_timeout_seconds` | int | 300 | Unload models after idle time |
| `pp_structure_idle_timeout_seconds` | int | 300 | Unload PP-StructureV3 after idle |
| `structure_model_memory_mb` | int | 2000 | Estimated memory for PP-StructureV3 |
| `ocr_model_memory_mb` | int | 500 | Estimated memory per OCR language model |
| `enable_lazy_model_loading` | bool | True | Load models on demand |
| `auto_unload_unused_models` | bool | True | Auto-unload unused language models |
### Service Pool Configuration
| Setting | Type | Default | Description |
|---------|------|---------|-------------|
| `enable_service_pool` | bool | True | Use OCRServicePool |
| `max_services_per_device` | int | 1 | Max OCRService instances per GPU |
| `max_total_services` | int | 2 | Max total OCRService instances |
| `service_acquire_timeout_seconds` | float | 300.0 | Timeout for acquiring service from pool |
| `max_queue_size` | int | 50 | Max pending tasks per device queue |
### Concurrency Control
| Setting | Type | Default | Description |
|---------|------|---------|-------------|
| `max_concurrent_predictions` | int | 2 | Max concurrent PP-StructureV3 predictions |
| `max_concurrent_pages` | int | 2 | Max pages processed concurrently |
| `inference_batch_size` | int | 1 | Batch size for inference |
| `enable_batch_processing` | bool | True | Enable batch processing for large docs |
### Recovery Settings
| Setting | Type | Default | Description |
|---------|------|---------|-------------|
| `enable_cpu_fallback` | bool | True | Fall back to CPU when GPU memory low |
| `enable_emergency_cleanup` | bool | True | Auto-cleanup on memory pressure |
| `enable_worker_restart` | bool | False | Restart workers on OOM (requires supervisor) |
### Feature Flags
| Setting | Type | Default | Description |
|---------|------|---------|-------------|
| `enable_chart_recognition` | bool | True | Enable chart/diagram recognition |
| `enable_formula_recognition` | bool | True | Enable math formula recognition |
| `enable_table_recognition` | bool | True | Enable table structure recognition |
| `enable_seal_recognition` | bool | True | Enable seal/stamp recognition |
| `enable_text_recognition` | bool | True | Enable general text recognition |
| `enable_memory_optimization` | bool | True | Enable memory optimizations |
### Environment Variable Override
All settings can be overridden via environment variables. The format is uppercase with underscores:
```bash
# Example .env file
MEMORY_WARNING_THRESHOLD=0.75
MEMORY_CRITICAL_THRESHOLD=0.90
MAX_CONCURRENT_PREDICTIONS=1
GPU_MEMORY_LIMIT_MB=4096
ENABLE_CPU_FALLBACK=true
```
### Recommended Configurations
#### RTX 4060 8GB (Default)
```bash
GPU_MEMORY_LIMIT_MB=6144
MAX_CONCURRENT_PREDICTIONS=2
MAX_CONCURRENT_PAGES=2
INFERENCE_BATCH_SIZE=1
```
#### RTX 3090 24GB
```bash
GPU_MEMORY_LIMIT_MB=20480
MAX_CONCURRENT_PREDICTIONS=4
MAX_CONCURRENT_PAGES=4
INFERENCE_BATCH_SIZE=2
```
#### CPU-Only Mode
```bash
FORCE_CPU_MODE=true
MAX_CONCURRENT_PREDICTIONS=1
ENABLE_CPU_FALLBACK=false
```
## Prometheus Metrics
The system exports Prometheus-format metrics via the `PrometheusMetrics` class. Available metrics:
### GPU Metrics
- `tool_ocr_memory_gpu_total_bytes` - Total GPU memory
- `tool_ocr_memory_gpu_used_bytes` - Used GPU memory
- `tool_ocr_memory_gpu_free_bytes` - Free GPU memory
- `tool_ocr_memory_gpu_utilization_ratio` - GPU utilization (0-1)
### Model Metrics
- `tool_ocr_memory_models_loaded_total` - Number of loaded models
- `tool_ocr_memory_models_memory_bytes` - Total memory used by models
- `tool_ocr_memory_model_ref_count{model_id}` - Reference count per model
### Prediction Metrics
- `tool_ocr_memory_predictions_active` - Currently active predictions
- `tool_ocr_memory_predictions_queue_depth` - Predictions waiting in queue
- `tool_ocr_memory_predictions_total` - Total predictions processed (counter)
- `tool_ocr_memory_predictions_timeouts_total` - Total prediction timeouts (counter)
### Pool Metrics
- `tool_ocr_memory_pool_services_total` - Total services in pool
- `tool_ocr_memory_pool_services_available` - Available services
- `tool_ocr_memory_pool_services_in_use` - Services in use
- `tool_ocr_memory_pool_acquisitions_total` - Total acquisitions (counter)
### Recovery Metrics
- `tool_ocr_memory_recovery_count_total` - Total recovery attempts
- `tool_ocr_memory_recovery_in_cooldown` - In cooldown (0/1)
- `tool_ocr_memory_recovery_cooldown_remaining_seconds` - Remaining cooldown
## Memory Dump API
The `MemoryDumper` class provides debugging capabilities:
```python
from app.services.memory_manager import get_memory_dumper
dumper = get_memory_dumper()
# Create a memory dump
dump = dumper.create_dump(include_python_objects=True)
# Get dump as dictionary for JSON serialization
dump_dict = dumper.to_dict(dump)
# Compare two dumps to detect memory growth
comparison = dumper.compare_dumps(dump1, dump2)
```
Memory dumps include:
- GPU/CPU memory usage
- Loaded models and reference counts
- Active predictions and queue state
- Service pool statistics
- Recovery manager state
- Python GC statistics
- Large Python objects (optional)