Files
OCR/openspec/changes/add-layout-preprocessing/tasks.md
egg ea0dd7456c feat: implement layout preprocessing backend
Backend implementation for add-layout-preprocessing proposal:
- Add LayoutPreprocessingService with CLAHE, sharpen, binarize
- Add auto-detection: analyze_image_quality() for contrast/edge metrics
- Integrate preprocessing into OCR pipeline (analyze_layout)
- Add Preview API: POST /api/v2/tasks/{id}/preview/preprocessing
- Add config options: layout_preprocessing_mode, thresholds
- Add schemas: PreprocessingConfig, PreprocessingPreviewResponse

Preprocessing only affects layout detection input.
Original images preserved for element extraction.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-27 15:17:20 +08:00

126 lines
4.7 KiB
Markdown

# Tasks: Add Image Preprocessing for Layout Detection
## 1. Configuration
- [ ] 1.1 Add preprocessing configuration to `backend/app/core/config.py`
- `layout_preprocessing_mode: str = "auto"` - Options: auto, manual, disabled
- `layout_preprocessing_contrast: str = "clahe"` - Options: none, histogram, clahe
- `layout_preprocessing_sharpen: bool = True` - Enable sharpening for faint lines
- `layout_preprocessing_binarize: bool = False` - Optional binarization (aggressive)
- [ ] 1.2 Add preprocessing schema to `backend/app/schemas/task.py`
- `PreprocessingMode` enum: auto, manual, disabled
- `PreprocessingConfig` schema for API request/response
## 2. Preprocessing Service
- [ ] 2.1 Create `backend/app/services/preprocessing_service.py`
- Image loading utility (supports PIL, OpenCV)
- Contrast enhancement methods (histogram equalization, CLAHE)
- Sharpening filter for line enhancement
- Optional adaptive binarization
- Return preprocessed image as numpy array or PIL Image
- [ ] 2.2 Implement `enhance_for_layout_detection()` function
- Input: Original image path or PIL Image + config
- Output: Preprocessed image (same format as input)
- Steps: contrast → sharpen → (optional) binarize
- [ ] 2.3 Implement `analyze_image_quality()` function (Auto mode)
- Calculate contrast level (standard deviation of grayscale)
- Detect edge clarity (Sobel/Canny edge strength)
- Return recommended `PreprocessingConfig` based on analysis
- Thresholds:
- Low contrast < 40: Apply CLAHE
- Faint edges < 0.1: Apply sharpen
- Very low contrast < 20: Consider binarize
## 3. Integration with OCR Service
- [ ] 3.1 Update `backend/app/services/ocr_service.py`
- Import preprocessing service
- Check preprocessing mode (auto/manual/disabled)
- If auto: call `analyze_image_quality()` first
- Before `_run_ppstructure()`, preprocess image based on config
- Pass preprocessed image to PP-Structure for layout detection
- Keep original image reference for image extraction
- [ ] 3.2 Ensure image element extraction uses original
- Verify `saved_path` and `img_path` in elements reference original
- Bbox coordinates from preprocessed detection applied to original crop
- [ ] 3.3 Update task start API to accept preprocessing options
- Add `preprocessing_mode` parameter to start request
- Add `preprocessing_config` for manual mode overrides
## 4. Preview API
- [ ] 4.1 Create `backend/app/api/v2/endpoints/preview.py`
- `POST /api/v2/tasks/{task_id}/preview/preprocessing`
- Input: page number, preprocessing config (optional)
- Output:
- Original image (base64 or URL)
- Preprocessed image (base64 or URL)
- Auto-detected config (if mode=auto)
- Image quality metrics (contrast, edge_strength)
- [ ] 4.2 Add preview router to API
- Register in `backend/app/api/v2/api.py`
- Add appropriate authentication/authorization
## 5. Frontend UI
- [ ] 5.1 Create `frontend/src/components/PreprocessingSettings.tsx`
- Radio buttons: Auto / Manual / Disabled
- Manual mode shows:
- Contrast dropdown: None / Histogram / CLAHE
- Sharpen checkbox
- Binarize checkbox
- Preview button to trigger comparison view
- [ ] 5.2 Create `frontend/src/components/PreprocessingPreview.tsx`
- Side-by-side image comparison (original vs preprocessed)
- Display detected quality metrics
- Show which auto settings would be applied
- Slider or toggle to switch between views
- [ ] 5.3 Integrate with task start flow
- Add PreprocessingSettings to OCR track options
- Pass selected config to task start API
- Store user preference in localStorage
- [ ] 5.4 Add i18n translations
- `frontend/src/i18n/locales/zh-TW.json` - Traditional Chinese
- `frontend/src/i18n/locales/en.json` - English (if exists)
## 6. Testing (with env)
- [ ] 6.1 Unit tests for preprocessing_service
- Test contrast enhancement methods
- Test sharpening filter
- Test binarization
- Test `analyze_image_quality()` with various images
- Test with various image formats (PNG, JPEG)
- [ ] 6.2 Unit tests for preview API
- Test preview endpoint returns correct images
- Test auto-detection returns sensible config
- [ ] 6.3 Integration tests (accountL ymirliu@panjit.com.tw ; password: 4RFV5tgb6yhn)
- Test OCR track with preprocessing modes (auto/manual/disabled)
- Verify image element quality is preserved
- Test with known problematic documents (faint table borders)
- Verify auto mode improves detection for low-quality images
## 7. Documentation
- [ ] 7.1 Update API documentation
- Document new configuration options
- Document preview endpoint
- Explain preprocessing behavior and modes
- [ ] 7.2 Add user guide section
- When to use auto vs manual
- How to interpret quality metrics
- Troubleshooting tips