Enterprise Meeting Knowledge Management System with: Backend (FastAPI): - Authentication proxy with JWT (pj-auth-api integration) - MySQL database with 4 tables (users, meetings, conclusions, actions) - Meeting CRUD with system code generation (C-YYYYMMDD-XX, A-YYYYMMDD-XX) - Dify LLM integration for AI summarization - Excel export with openpyxl - 20 unit tests (all passing) Client (Electron): - Login page with company auth - Meeting list with create/delete - Meeting detail with real-time transcription - Editable transcript textarea (single block, easy editing) - AI summarization with conclusions/action items - 5-second segment recording (efficient for long meetings) Sidecar (Python): - faster-whisper medium model with int8 quantization - ONNX Runtime VAD (lightweight, ~20MB vs PyTorch ~2GB) - Chinese punctuation processing - OpenCC for Traditional Chinese conversion - Anti-hallucination parameters - Auto-cleanup of temp audio files OpenSpec: - add-meeting-assistant-mvp (47 tasks, archived) - add-realtime-transcription (29 tasks, archived) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
6.5 KiB
6.5 KiB
Context
The Meeting Assistant currently uses batch transcription: audio is recorded, saved to file, then sent to Whisper for processing. This creates a poor UX where users must wait until recording stops to see any text. Users also cannot correct transcription errors.
Stakeholders: End users recording meetings, admin reviewing transcripts Constraints: i5/8GB hardware target, offline capability required
Goals / Non-Goals
Goals
- Real-time text display during recording (< 3 second latency)
- Segment-based editing without disrupting ongoing transcription
- Punctuation in output (Chinese: 。,?!;:)
- Maintain offline capability (all processing local)
Non-Goals
- Speaker diarization (who said what) - future enhancement
- Multi-language mixing - Chinese only for MVP
- Cloud-based transcription fallback
Architecture
┌─────────────────────────────────────────────────────────────┐
│ Renderer Process (meeting-detail.html) │
│ ┌──────────────┐ ┌─────────────────────────────────┐ │
│ │ MediaRecorder│───▶│ Editable Transcript Component │ │
│ │ (audio chunks) │ [Segment 1] [Segment 2] [...] │ │
│ └──────┬───────┘ └─────────────────────────────────┘ │
│ │ IPC: stream-audio-chunk │
└─────────┼──────────────────────────────────────────────────┘
▼
┌─────────────────────────────────────────────────────────────┐
│ Main Process (main.js) │
│ ┌──────────────────┐ ┌─────────────────────────────┐ │
│ │ Audio Buffer │────▶│ Sidecar (stdin pipe) │ │
│ │ (accumulate PCM) │ │ │ │
│ └──────────────────┘ └──────────┬──────────────────┘ │
│ │ IPC: transcription-segment
│ ▼ │
│ Forward to renderer │
└─────────────────────────────────────────────────────────────┘
│
▼ stdin (WAV chunks)
┌─────────────────────────────────────────────────────────────┐
│ Sidecar Process (transcriber.py) │
│ ┌──────────────┐ ┌──────────────┐ ┌────────────────┐ │
│ │ VAD Buffer │──▶│ Whisper │──▶│ Punctuator │ │
│ │ (silero-vad) │ │ (transcribe) │ │ (rule-based) │ │
│ └──────────────┘ └──────────────┘ └────────────────┘ │
│ │ │ │
│ │ Detect speech end │ │
│ ▼ ▼ │
│ stdout: {"segment_id": 1, "text": "今天開會討論。", ...} │
└─────────────────────────────────────────────────────────────┘
Decisions
Decision 1: VAD-triggered Segmentation
What: Use Silero VAD to detect speech boundaries, transcribe complete utterances Why:
- More accurate than fixed-interval chunking
- Natural sentence boundaries
- Reduces partial/incomplete transcriptions Alternatives:
- Fixed 5-second chunks (simpler but cuts mid-sentence)
- Word-level streaming (too fragmented, higher latency)
Decision 2: Segment-based Editing
What: Each VAD segment becomes an editable text block with unique ID Why:
- Users can edit specific segments without affecting others
- New segments append without disrupting editing
- Simple merge on save (concatenate all segments) Alternatives:
- Single textarea (editing conflicts with appending text)
- Contenteditable div (complex cursor management)
Decision 3: Audio Format Pipeline
What: WebM (MediaRecorder) → WAV conversion in main.js → raw PCM to sidecar Why:
- MediaRecorder only outputs WebM/Opus in browsers
- Whisper works best with WAV/PCM
- Conversion in main.js keeps sidecar simple Alternatives:
- ffmpeg in sidecar (adds large dependency)
- Raw PCM from AudioWorklet (complex, browser compatibility issues)
Decision 4: Punctuation via Whisper + Rules
What: Enable Whisper word_timestamps, apply rule-based punctuation after Why:
- Whisper alone outputs minimal punctuation for Chinese
- Rule-based post-processing adds 。,? based on pauses and patterns
- No additional model needed Alternatives:
- Separate punctuation model (adds latency and complexity)
- No punctuation (user requirement)
Risks / Trade-offs
| Risk | Mitigation |
|---|---|
| Latency > 3s on slow hardware | Use "tiny" model option, skip VAD if needed |
| WebM→WAV conversion quality loss | Use lossless conversion, test on various inputs |
| Memory usage with long meetings | Limit audio buffer to 30s, process and discard |
| Segment boundary splits words | Use VAD with 500ms silence threshold |
Implementation Phases
- Phase 1: Sidecar streaming mode with VAD
- Phase 2: IPC audio streaming pipeline
- Phase 3: Frontend editable segment component
- Phase 4: Punctuation post-processing
Open Questions
- Should segments be auto-merged after N seconds of no editing?
- Maximum segment count before auto-archiving old segments?