Files
egg 8b6184ecc5 feat: Meeting Assistant MVP - Complete implementation
Enterprise Meeting Knowledge Management System with:

Backend (FastAPI):
- Authentication proxy with JWT (pj-auth-api integration)
- MySQL database with 4 tables (users, meetings, conclusions, actions)
- Meeting CRUD with system code generation (C-YYYYMMDD-XX, A-YYYYMMDD-XX)
- Dify LLM integration for AI summarization
- Excel export with openpyxl
- 20 unit tests (all passing)

Client (Electron):
- Login page with company auth
- Meeting list with create/delete
- Meeting detail with real-time transcription
- Editable transcript textarea (single block, easy editing)
- AI summarization with conclusions/action items
- 5-second segment recording (efficient for long meetings)

Sidecar (Python):
- faster-whisper medium model with int8 quantization
- ONNX Runtime VAD (lightweight, ~20MB vs PyTorch ~2GB)
- Chinese punctuation processing
- OpenCC for Traditional Chinese conversion
- Anti-hallucination parameters
- Auto-cleanup of temp audio files

OpenSpec:
- add-meeting-assistant-mvp (47 tasks, archived)
- add-realtime-transcription (29 tasks, archived)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-10 20:17:44 +08:00

118 lines
6.5 KiB
Markdown

## Context
The Meeting Assistant currently uses batch transcription: audio is recorded, saved to file, then sent to Whisper for processing. This creates a poor UX where users must wait until recording stops to see any text. Users also cannot correct transcription errors.
**Stakeholders**: End users recording meetings, admin reviewing transcripts
**Constraints**: i5/8GB hardware target, offline capability required
## Goals / Non-Goals
### Goals
- Real-time text display during recording (< 3 second latency)
- Segment-based editing without disrupting ongoing transcription
- Punctuation in output (Chinese: 。,?!;:)
- Maintain offline capability (all processing local)
### Non-Goals
- Speaker diarization (who said what) - future enhancement
- Multi-language mixing - Chinese only for MVP
- Cloud-based transcription fallback
## Architecture
```
┌─────────────────────────────────────────────────────────────┐
│ Renderer Process (meeting-detail.html) │
│ ┌──────────────┐ ┌─────────────────────────────────┐ │
│ │ MediaRecorder│───▶│ Editable Transcript Component │ │
│ │ (audio chunks) │ [Segment 1] [Segment 2] [...] │ │
│ └──────┬───────┘ └─────────────────────────────────┘ │
│ │ IPC: stream-audio-chunk │
└─────────┼──────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Main Process (main.js) │
│ ┌──────────────────┐ ┌─────────────────────────────┐ │
│ │ Audio Buffer │────▶│ Sidecar (stdin pipe) │ │
│ │ (accumulate PCM) │ │ │ │
│ └──────────────────┘ └──────────┬──────────────────┘ │
│ │ IPC: transcription-segment
│ ▼ │
│ Forward to renderer │
└─────────────────────────────────────────────────────────────┘
▼ stdin (WAV chunks)
┌─────────────────────────────────────────────────────────────┐
│ Sidecar Process (transcriber.py) │
│ ┌──────────────┐ ┌──────────────┐ ┌────────────────┐ │
│ │ VAD Buffer │──▶│ Whisper │──▶│ Punctuator │ │
│ │ (silero-vad) │ │ (transcribe) │ │ (rule-based) │ │
│ └──────────────┘ └──────────────┘ └────────────────┘ │
│ │ │ │
│ │ Detect speech end │ │
│ ▼ ▼ │
│ stdout: {"segment_id": 1, "text": "今天開會討論。", ...} │
└─────────────────────────────────────────────────────────────┘
```
## Decisions
### Decision 1: VAD-triggered Segmentation
**What**: Use Silero VAD to detect speech boundaries, transcribe complete utterances
**Why**:
- More accurate than fixed-interval chunking
- Natural sentence boundaries
- Reduces partial/incomplete transcriptions
**Alternatives**:
- Fixed 5-second chunks (simpler but cuts mid-sentence)
- Word-level streaming (too fragmented, higher latency)
### Decision 2: Segment-based Editing
**What**: Each VAD segment becomes an editable text block with unique ID
**Why**:
- Users can edit specific segments without affecting others
- New segments append without disrupting editing
- Simple merge on save (concatenate all segments)
**Alternatives**:
- Single textarea (editing conflicts with appending text)
- Contenteditable div (complex cursor management)
### Decision 3: Audio Format Pipeline
**What**: WebM (MediaRecorder) WAV conversion in main.js raw PCM to sidecar
**Why**:
- MediaRecorder only outputs WebM/Opus in browsers
- Whisper works best with WAV/PCM
- Conversion in main.js keeps sidecar simple
**Alternatives**:
- ffmpeg in sidecar (adds large dependency)
- Raw PCM from AudioWorklet (complex, browser compatibility issues)
### Decision 4: Punctuation via Whisper + Rules
**What**: Enable Whisper word_timestamps, apply rule-based punctuation after
**Why**:
- Whisper alone outputs minimal punctuation for Chinese
- Rule-based post-processing adds 。,? based on pauses and patterns
- No additional model needed
**Alternatives**:
- Separate punctuation model (adds latency and complexity)
- No punctuation (user requirement)
## Risks / Trade-offs
| Risk | Mitigation |
|------|------------|
| Latency > 3s on slow hardware | Use "tiny" model option, skip VAD if needed |
| WebM→WAV conversion quality loss | Use lossless conversion, test on various inputs |
| Memory usage with long meetings | Limit audio buffer to 30s, process and discard |
| Segment boundary splits words | Use VAD with 500ms silence threshold |
## Implementation Phases
1. **Phase 1**: Sidecar streaming mode with VAD
2. **Phase 2**: IPC audio streaming pipeline
3. **Phase 3**: Frontend editable segment component
4. **Phase 4**: Punctuation post-processing
## Open Questions
- Should segments be auto-merged after N seconds of no editing?
- Maximum segment count before auto-archiving old segments?