Compare commits

..

6 Commits

Author SHA1 Message Date
bad760a214 整合所有檔案到 pj_llama 目錄
- 遷移完整的專案到 pj_llama 目錄
- 包含所有最新檔案和 Git 歷史
- 移除不需要的舊檔案
- 統一開發和執行環境
2025-09-19 23:32:09 +08:00
ece261ed8a 新增內網外網選擇功能
新增功能:
 llama_universal.py - 主程式支援內外網環境選擇
🌐 內網端點:http://192.168.0.6:21180-21182/v1
🌐 外網端點:https://llama.theaken.com/v1/*
🔄 對話中可使用 'switch' 指令切換環境
📱 智慧環境偵測和錯誤處理

更新內容:
- 新增網路環境選擇介面
- 支援內網三個端點 (21180, 21181, 21182)
- 支援外網三個端點(通用、GPT專用、DeepSeek專用)
- 新增 switch 指令可在對話中切換環境
- 完整的錯誤處理和重試機制
- 更新 README.md 說明新功能和使用方式

現在用戶可以根據所在網路環境自由選擇最適合的連接方式!
2025-09-19 23:27:19 +08:00
390a8cc7f7 移除不存在的備用端點
變更內容:
- 從 llama_chat.py 移除備用端點配置
- 從 llama_full_api.py 移除備用端點配置
- 簡化端點測試邏輯
- 更新所有文檔移除備用端點說明
- 專注於實際存在的三個端點:
  * https://llama.theaken.com/v1
  * https://llama.theaken.com/v1/gpt-oss-120b
  * https://llama.theaken.com/v1/deepseek-r1-671b

程式結構更清晰,移除虛假的備用選項。
2025-09-19 22:09:15 +08:00
3c0fba5fc8 完全移除內網連接,專注外網API
變更項目:
- 刪除所有內網相關程式檔案
- 移除內網IP參考 (192.168.x.x)
- 精簡檔案結構,只保留核心程式
- 重命名主程式為 llama_chat.py
- 更新所有文檔移除內網內容
- 專注於外網 API 連接和多端點支援

保留檔案:
- llama_chat.py (主程式)
- llama_full_api.py (完整版)
- quick_test.py (快速測試)
- test_all_models.py (模型測試)
- README.md, 操作指南.md (文檔)
2025-09-19 22:07:01 +08:00
e71495ece4 重構為外網連接版本
主要變更:
- 移除所有內網 IP (192.168.x.x)
- 改用外網端點 (https://llama.theaken.com)
- 新增 llama_external_api.py 專門處理外網連接
- 更新所有文檔為外網版本
- 加入備用端點自動切換機制
- 優化錯誤處理和超時設定
2025-09-19 22:04:10 +08:00
34fcf39fda 更新 README.md 為中文版本
- 改為簡單易懂的中文說明
- 加入詳細的使用教學
- 增加常見問題解答
- 提供範例程式碼
- 加入 emoji 讓內容更生動
2025-09-19 21:59:47 +08:00
14 changed files with 750 additions and 1026 deletions

View File

@@ -8,11 +8,7 @@
"Bash(dir)",
"Bash(git init:*)",
"Bash(git add:*)",
"Bash(git commit:*)",
"Bash(git remote add:*)",
"Bash(git branch:*)",
"Bash(git push:*)",
"Bash(git pull:*)"
"Bash(git commit:*)"
],
"defaultMode": "acceptEdits"
}

340
README.md
View File

@@ -1,201 +1,219 @@
# Llama API Client
# Llama AI 對話程式
A Python client for connecting to Llama AI models through OpenAI-compatible API endpoints.
一個簡單易用的 Python 程式,用於連接和使用 Llama AI 模型進行對話。
## Features
## 🌟 主要功能
- 🌐 Support for both internal network and external API endpoints
- 🤖 Multiple model support (GPT-OSS-120B, DeepSeek-R1-671B, Qwen3-Embedding-8B)
- 💬 Interactive chat interface with conversation history
- 🔄 Automatic endpoint testing and failover
- 🧹 Automatic response cleaning (removes thinking tags and special markers)
- 📝 Full conversation context management
- **支援多端點連接** - 自動偵測可用的 API 端點
- 💬 **互動式對話介面** - 像聊天一樣與 AI 對話
- 🤖 **多模型支援** - GPT-OSS、DeepSeek、Qwen 等多種模型
- 🔄 **自動端點選擇** - 自動測試並選擇可用端點
- 🧹 **智慧清理回應** - 自動移除 AI 思考過程的標記
- 📝 **對話歷史管理** - 保持上下文連貫的對話
## Quick Start
## 🚀 快速開始
### Installation
### 1. 安裝需求
確保你的電腦已安裝 Python 3.7 或更新版本。
```bash
# Clone the repository
git clone https://github.com/yourusername/llama-api-client.git
cd llama-api-client
# Install dependencies
pip install -r requirements.txt
# 安裝必要套件
pip install openai
```
### Basic Usage
### 2. 下載程式
```bash
# 複製專案
git clone https://gitea.theaken.com/aken1023/pj_llama.git
cd pj_llama
# 或直接下載 ZIP 檔案解壓縮
```
### 3. 執行對話程式
```bash
# 🌟 執行主程式(支援內外網選擇)
python llama_universal.py
# 或執行外網專用版本
python llama_chat.py
# 或執行完整版本(支援多端點)
python llama_full_api.py
```
## 📖 使用說明
### 基本對話
執行程式後,會出現以下畫面:
```
============================================================
選擇網路環境
============================================================
可用環境:
1. 內網環境
說明:公司/學校內部網路,使用內部 IP 地址
端點數量3 個
2. 外網環境
說明:公開網際網路,使用外部域名
端點數量3 個
請選擇環境 (1-2),預設為 1:
```
選擇端點後即可開始對話:
```
你: 你好
AI: 你好!有什麼我可以幫助你的嗎?
你: 1+1等於多少
AI: 1+1等於2。
```
### 對話指令
在對話中可以使用以下指令:
| 指令 | 功能 |
|-----|------|
| `exit``quit` | 結束對話 |
| `clear` | 清空對話歷史,開始新對話 |
| `model` | 切換使用的 AI 模型 |
| `switch` | 切換網路環境(內網/外網) |
## 🔧 程式檔案說明
| 檔案名稱 | 用途說明 |
|---------|---------|
| `llama_universal.py` | **🌟 主程式** - 支援內外網環境選擇 |
| `llama_chat.py` | 外網專用對話程式 |
| `llama_full_api.py` | 完整功能版本,支援多端點切換 |
| `quick_test.py` | 快速測試連接是否正常 |
| `test_all_models.py` | 測試所有模型的工具 |
## 🌐 可用的 API 端點
### 內網端點(公司/學校內部)
| 端點 | 地址 | 支援模型 |
|-----|------|---------|
| 內網端點 1 | `http://192.168.0.6:21180/v1` | 所有模型 |
| 內網端點 2 | `http://192.168.0.6:21181/v1` | 所有模型 |
| 內網端點 3 | `http://192.168.0.6:21182/v1` | 所有模型 |
### 外網端點(公開網際網路)
| 端點 | 地址 | 支援模型 |
|-----|------|---------|
| 通用端點 | `https://llama.theaken.com/v1` | 所有模型 |
| GPT-OSS 專用 | `https://llama.theaken.com/v1/gpt-oss-120b` | GPT-OSS-120B |
| DeepSeek 專用 | `https://llama.theaken.com/v1/deepseek-r1-671b` | DeepSeek-R1-671B |
## 🤖 支援的 AI 模型
1. **GPT-OSS-120B** - 開源 GPT 模型1200 億參數
2. **DeepSeek-R1-671B** - DeepSeek 推理模型6710 億參數
3. **Qwen3-Embedding-8B** - 通義千問嵌入模型80 億參數
## ❓ 常見問題
### 問題:程式顯示「無法連接」
**解決方法:**
1. 嘗試切換網路環境(使用 `switch` 指令)
2. 內網環境:確認在公司/學校網路內
3. 外網環境:確認可以訪問 https://llama.theaken.com
4. 執行 `python quick_test.py` 測試連接
### 問題AI 回應包含奇怪的標記
**說明:**
有時 AI 回應會包含 `<think>``<|channel|>` 等標記,這是 AI 的思考過程,程式會自動清理這些內容。
### 問題:對話不連貫
**解決方法:**
使用 `clear` 指令清空對話歷史,開始新的對話。
## 📝 簡單範例程式碼
如果你想在自己的程式中使用,可以參考以下程式碼:
```python
from openai import OpenAI
# Configure API
API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
BASE_URL = "http://192.168.0.6:21180/v1"
# Create client
client = OpenAI(api_key=API_KEY, base_url=BASE_URL)
# Send request
response = client.chat.completions.create(
model="gpt-oss-120b",
messages=[{"role": "user", "content": "Hello!"}],
temperature=0.7,
max_tokens=200
# 設定連接(外網)
client = OpenAI(
api_key="paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo=",
base_url="https://llama.theaken.com/v1"
)
# 或設定連接(內網)
client = OpenAI(
api_key="paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo=",
base_url="http://192.168.0.6:21180/v1"
)
# 發送訊息
response = client.chat.completions.create(
model="gpt-oss-120b",
messages=[
{"role": "user", "content": "你好"}
]
)
# 顯示回應
print(response.choices[0].message.content)
```
### Run Interactive Chat
## 🛠️ 進階設定
```bash
# Full-featured chat with all endpoints
python llama_full_api.py
### 修改 API 金鑰
# Internal network only
python llama_chat.py
如果需要使用不同的 API 金鑰,編輯程式中的:
# Quick test
python quick_test.py
```
## Available Endpoints
### Internal Network (Tested & Working ✅)
| Endpoint | URL | Status |
|----------|-----|--------|
| Internal 1 | `http://192.168.0.6:21180/v1` | ✅ Working |
| Internal 2 | `http://192.168.0.6:21181/v1` | ✅ Working |
| Internal 3 | `http://192.168.0.6:21182/v1` | ✅ Working |
| Internal 4 | `http://192.168.0.6:21183/v1` | ❌ Error 500 |
### External Network
| Endpoint | URL | Status |
|----------|-----|--------|
| GPT-OSS | `https://llama.theaken.com/v1/gpt-oss-120b` | 🔄 Pending |
| DeepSeek | `https://llama.theaken.com/v1/deepseek-r1-671b` | 🔄 Pending |
| General | `https://llama.theaken.com/v1` | 🔄 Pending |
## Project Structure
```
llama-api-client/
├── README.md # This file
├── requirements.txt # Python dependencies
├── 操作指南.md # Chinese operation guide
├── llama_full_api.py # Full-featured chat client
├── llama_chat.py # Internal network chat client
├── local_api_test.py # Endpoint testing tool
├── quick_test.py # Quick connection test
├── test_all_models.py # Model testing script
└── demo_chat.py # Demo chat with fallback
```
## Chat Commands
During chat sessions, you can use these commands:
- `exit` or `quit` - End the conversation
- `clear` - Clear conversation history
- `model` - Switch between available models
## Configuration
### API Key
```python
API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
API_KEY = "你的新金鑰"
```
### Available Models
- `gpt-oss-120b` - GPT Open Source 120B parameters
- `deepseek-r1-671b` - DeepSeek R1 671B parameters
- `qwen3-embedding-8b` - Qwen3 Embedding 8B parameters
### 新增端點
## Troubleshooting
`llama_full_api.py` 中的 `ENDPOINTS` 加入新端點:
### Issue: 502 Bad Gateway
**Cause**: External API server is offline
**Solution**: Use internal network endpoints
### Issue: Connection Error
**Cause**: Not on internal network or incorrect IP
**Solution**:
1. Verify network connectivity: `ping 192.168.0.6`
2. Check firewall settings
3. Ensure you're on the same network
### Issue: Encoding Error
**Cause**: Windows terminal encoding issues
**Solution**: Use English for conversations or modify terminal encoding
### Issue: Response Contains Special Markers
**Description**: Responses may contain `<think>`, `<|channel|>` tags
**Solution**: The client automatically removes these markers
## Response Cleaning
The client automatically removes these special markers from AI responses:
- `<think>...</think>` - Thinking process
- `<|channel|>...<|message|>` - Channel markers
- `<|end|>`, `<|start|>` - End/start markers
## Requirements
- Python 3.7+
- openai>=1.0.0
- requests (optional, for direct API calls)
## Development
### Testing Connection
```python
python -c "from openai import OpenAI; client = OpenAI(api_key='YOUR_KEY', base_url='YOUR_URL'); print(client.chat.completions.create(model='gpt-oss-120b', messages=[{'role': 'user', 'content': 'test'}], max_tokens=5).choices[0].message.content)"
```
### Adding New Endpoints
Edit `ENDPOINTS` dictionary in `llama_full_api.py`:
```python
ENDPOINTS = {
"internal": [
ENDPOINTS = [
{
"name": "New Endpoint",
"url": "http://new-endpoint/v1",
"name": "新端點",
"url": "https://新的地址/v1",
"models": ["gpt-oss-120b"]
}
]
}
]
```
## License
## 📄 授權條款
MIT License - See LICENSE file for details
本專案採用 MIT 授權條款,可自由使用、修改和分發。
## Contributing
## 🤝 問題回報
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
如果遇到問題或有建議,歡迎在 Gitea 上開 Issue
https://gitea.theaken.com/aken1023/pj_llama/issues
## Support
## 📊 測試狀態
For issues or questions:
1. Check the [操作指南.md](操作指南.md) for detailed Chinese documentation
2. Open an issue on GitHub
3. Contact the API administrator for server-related issues
## Acknowledgments
- Built with OpenAI Python SDK
- Compatible with OpenAI API format
- Supports multiple Llama model variants
最後測試時間2025-09-19
- 📡 API 端點:正在測試中
- 🔄 自動選擇:程式會自動選擇可用的端點
---
**Last Updated**: 2025-09-19
**Version**: 1.0.0
**Status**: Internal endpoints working, external endpoints pending
**版本**: 1.0.0
**作者**: Aken
**專案網址**: https://gitea.theaken.com/aken1023/pj_llama

View File

@@ -1,124 +0,0 @@
"""
Llama API 對話程式 (示範版本)
當 API 伺服器恢復後,可以使用此程式進行對話
"""
from openai import OpenAI
import time
# API 設定
API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
BASE_URL = "https://llama.theaken.com/v1"
def simulate_chat():
"""模擬對話功能(用於展示)"""
print("\n" + "="*50)
print("Llama AI 對話系統 - 示範模式")
print("="*50)
print("\n[注意] API 伺服器目前離線,以下為模擬對話")
print("當伺服器恢復後,將自動連接真實 API\n")
# 模擬回應
demo_responses = [
"你好!我是 Llama AI 助手,很高興為你服務。",
"這是一個示範回應。當 API 伺服器恢復後,你將收到真實的 AI 回應。",
"我可以回答問題、協助編程、翻譯文字等多種任務。",
"請問有什麼我可以幫助你的嗎?"
]
response_index = 0
print("輸入 'exit' 結束對話\n")
while True:
user_input = input("你: ").strip()
if user_input.lower() in ['exit', 'quit']:
print("\n再見!")
break
if not user_input:
continue
# 模擬思考時間
print("\nAI 思考中", end="")
for _ in range(3):
time.sleep(0.3)
print(".", end="", flush=True)
print()
# 顯示模擬回應
print(f"\nAI: {demo_responses[response_index % len(demo_responses)]}")
response_index += 1
def real_chat():
"""實際對話功能(當 API 可用時)"""
client = OpenAI(api_key=API_KEY, base_url=BASE_URL)
print("\n" + "="*50)
print("Llama AI 對話系統")
print("="*50)
print("\n已連接到 Llama API")
print("輸入 'exit' 結束對話\n")
messages = []
while True:
user_input = input("你: ").strip()
if user_input.lower() in ['exit', 'quit']:
print("\n再見!")
break
if not user_input:
continue
messages.append({"role": "user", "content": user_input})
try:
print("\nAI 思考中...")
response = client.chat.completions.create(
model="gpt-oss-120b",
messages=messages,
temperature=0.7,
max_tokens=1000
)
ai_response = response.choices[0].message.content
print(f"\nAI: {ai_response}")
messages.append({"role": "assistant", "content": ai_response})
except Exception as e:
print(f"\n[錯誤] {str(e)[:100]}")
print("無法取得回應,請稍後再試")
def main():
print("檢查 API 連接狀態...")
# 嘗試連接 API
try:
client = OpenAI(api_key=API_KEY, base_url=BASE_URL)
# 快速測試
response = client.chat.completions.create(
model="gpt-oss-120b",
messages=[{"role": "user", "content": "test"}],
max_tokens=10,
timeout=5
)
print("[成功] API 已連接")
real_chat()
except Exception as e:
error_msg = str(e)
if "502" in error_msg or "Bad gateway" in error_msg:
print("[提示] API 伺服器目前離線 (502 錯誤)")
print("進入示範模式...")
simulate_chat()
else:
print(f"[錯誤] 無法連接: {error_msg[:100]}")
print("\n是否要進入示範模式? (y/n): ", end="")
if input().lower() == 'y':
simulate_chat()
if __name__ == "__main__":
main()

View File

@@ -1,34 +1,45 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Llama 內網 API 對話程式
支援多個端點和模型選擇
Llama API 外網連接程式
使用外網端點進行 AI 對話
"""
from openai import OpenAI
import requests
import sys
import re
from datetime import datetime
# API 配置
# API 金鑰
API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
# 可用端點 (前 3 個已測試可用)
# 外網 API 端點配置
ENDPOINTS = [
"http://192.168.0.6:21180/v1",
"http://192.168.0.6:21181/v1",
"http://192.168.0.6:21182/v1",
"http://192.168.0.6:21183/v1"
{
"name": "Llama 通用端點",
"url": "https://llama.theaken.com/v1",
"models": ["gpt-oss-120b", "deepseek-r1-671b", "qwen3-embedding-8b"]
},
{
"name": "GPT-OSS 專用端點",
"url": "https://llama.theaken.com/v1/gpt-oss-120b",
"models": ["gpt-oss-120b"]
},
{
"name": "DeepSeek 專用端點",
"url": "https://llama.theaken.com/v1/deepseek-r1-671b",
"models": ["deepseek-r1-671b"]
}
]
# 模型列表
MODELS = [
"gpt-oss-120b",
"deepseek-r1-671b",
"qwen3-embedding-8b"
]
# 外網 API 端點配置(僅包含實際存在的端點)
def clean_response(text):
"""清理 AI 回應中的特殊標記"""
if not text:
return text
# 移除思考標記
if "<think>" in text:
text = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
@@ -47,34 +58,94 @@ def clean_response(text):
return text
def test_endpoint(endpoint):
def test_endpoint(endpoint_info, timeout=10):
"""測試端點是否可用"""
url = endpoint_info["url"]
model = endpoint_info["models"][0] if endpoint_info["models"] else "gpt-oss-120b"
print(f" 測試 {endpoint_info['name']}...", end="", flush=True)
try:
client = OpenAI(api_key=API_KEY, base_url=endpoint)
response = client.chat.completions.create(
model="gpt-oss-120b",
messages=[{"role": "user", "content": "Hi"}],
max_tokens=10,
timeout=5
# 處理特殊的模型端點 URL
if url.endswith("/gpt-oss-120b") or url.endswith("/deepseek-r1-671b"):
base_url = url.rsplit("/", 1)[0]
else:
base_url = url
client = OpenAI(
api_key=API_KEY,
base_url=base_url,
timeout=timeout
)
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": "test"}],
max_tokens=5
)
print(" ✓ 可用")
return True
except:
except Exception as e:
error_msg = str(e)
if "502" in error_msg:
print(" ✗ 伺服器暫時無法使用 (502)")
elif "timeout" in error_msg.lower():
print(" ✗ 連接超時")
elif "connection" in error_msg.lower():
print(" ✗ 無法連接")
else:
print(f" ✗ 錯誤")
return False
def chat_session(endpoint, model):
def find_working_endpoint():
"""尋找可用的端點"""
print("\n正在測試可用端點...")
print("-" * 50)
for endpoint in ENDPOINTS:
if test_endpoint(endpoint):
return endpoint
return None
def chat_session(endpoint_info):
"""對話主程式"""
print("\n" + "="*60)
print("Llama AI 對話系統")
print("="*60)
print(f"端點: {endpoint}")
print(f"模型: {model}")
print(f"使用端點: {endpoint_info['name']}")
print(f"URL: {endpoint_info['url']}")
print(f"可用模型: {', '.join(endpoint_info['models'])}")
print("\n指令:")
print(" exit/quit - 結束對話")
print(" clear - 清空對話歷史")
print(" model - 切換模型")
print("-"*60)
client = OpenAI(api_key=API_KEY, base_url=endpoint)
# 處理 URL
url = endpoint_info["url"]
if url.endswith("/gpt-oss-120b") or url.endswith("/deepseek-r1-671b"):
base_url = url.rsplit("/", 1)[0]
else:
base_url = url
client = OpenAI(api_key=API_KEY, base_url=base_url)
# 選擇模型
if len(endpoint_info['models']) == 1:
current_model = endpoint_info['models'][0]
else:
print("\n選擇模型:")
for i, model in enumerate(endpoint_info['models'], 1):
print(f" {i}. {model}")
choice = input("選擇 (預設: 1): ").strip()
if choice.isdigit() and 1 <= int(choice) <= len(endpoint_info['models']):
current_model = endpoint_info['models'][int(choice)-1]
else:
current_model = endpoint_info['models'][0]
print(f"\n使用模型: {current_model}")
messages = []
while True:
@@ -94,13 +165,16 @@ def chat_session(endpoint, model):
continue
if user_input.lower() == 'model':
if len(endpoint_info['models']) == 1:
print(f"[系統] 此端點只支援 {endpoint_info['models'][0]}")
else:
print("\n可用模型:")
for i, m in enumerate(MODELS, 1):
for i, m in enumerate(endpoint_info['models'], 1):
print(f" {i}. {m}")
choice = input("選擇 (1-3): ").strip()
if choice in ['1', '2', '3']:
model = MODELS[int(choice)-1]
print(f"[系統] 已切換到 {model}")
choice = input("選擇: ").strip()
if choice.isdigit() and 1 <= int(choice) <= len(endpoint_info['models']):
current_model = endpoint_info['models'][int(choice)-1]
print(f"[系統] 已切換到 {current_model}")
continue
messages.append({"role": "user", "content": user_input})
@@ -109,7 +183,7 @@ def chat_session(endpoint, model):
try:
response = client.chat.completions.create(
model=model,
model=current_model,
messages=messages,
temperature=0.7,
max_tokens=1000
@@ -118,17 +192,14 @@ def chat_session(endpoint, model):
ai_response = response.choices[0].message.content
ai_response = clean_response(ai_response)
print("\r" + " "*20 + "\r", end="") # 清除 "思考中..."
print("\r" + " "*20 + "\r", end="")
print(f"AI: {ai_response}")
messages.append({"role": "assistant", "content": ai_response})
except UnicodeEncodeError:
print("\r[錯誤] 編碼問題,請使用英文對話")
messages.pop() # 移除最後的用戶訊息
except Exception as e:
print(f"\r[錯誤] {str(e)[:100]}")
messages.pop() # 移除最後的用戶訊息
messages.pop()
except KeyboardInterrupt:
print("\n\n[中斷] 使用 exit 命令正常退出")
@@ -139,52 +210,33 @@ def chat_session(endpoint, model):
def main():
print("="*60)
print("Llama 內網 API 對話程式")
print("Llama AI 外網對話程式")
print(f"時間: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print("="*60)
# 測試端點
print("\n正在檢查可用端點...")
available = []
for i, endpoint in enumerate(ENDPOINTS[:3], 1): # 只測試前3個
print(f" 測試 {endpoint}...", end="", flush=True)
if test_endpoint(endpoint):
print(" [OK]")
available.append(endpoint)
else:
print(" [失敗]")
# 尋找可用端點
working_endpoint = find_working_endpoint()
if not available:
print("\n[錯誤] 沒有可用的端點")
if not working_endpoint:
print("\n" + "="*60)
print("錯誤:無法連接到任何 API 端點")
print("="*60)
print("\n可能的原因:")
print("1. API 伺服器暫時離線")
print("2. 網路連接問題")
print("3. 防火牆或代理設定")
print("\n建議:")
print("1. 稍後再試10-30分鐘後")
print("2. 檢查網路連接")
print("3. 確認可以訪問 https://llama.theaken.com")
sys.exit(1)
# 選擇端點
if len(available) == 1:
selected_endpoint = available[0]
print(f"\n使用端點: {selected_endpoint}")
else:
print(f"\n找到 {len(available)} 個可用端點:")
for i, ep in enumerate(available, 1):
print(f" {i}. {ep}")
print("\n選擇端點 (預設: 1): ", end="")
choice = input().strip()
if choice and choice.isdigit() and 1 <= int(choice) <= len(available):
selected_endpoint = available[int(choice)-1]
else:
selected_endpoint = available[0]
# 選擇模型
print("\n可用模型:")
for i, model in enumerate(MODELS, 1):
print(f" {i}. {model}")
print("\n選擇模型 (預設: 1): ", end="")
choice = input().strip()
if choice in ['1', '2', '3']:
selected_model = MODELS[int(choice)-1]
else:
selected_model = MODELS[0]
print("\n" + "="*60)
print(f"成功連接到: {working_endpoint['name']}")
print("="*60)
# 開始對話
chat_session(selected_endpoint, selected_model)
chat_session(working_endpoint)
if __name__ == "__main__":
try:
@@ -193,4 +245,6 @@ if __name__ == "__main__":
print("\n\n程式已退出")
except Exception as e:
print(f"\n[錯誤] {e}")
import traceback
traceback.print_exc()
sys.exit(1)

View File

@@ -16,40 +16,23 @@ API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
# API 端點配置
ENDPOINTS = {
"內網": [
"主要": [
{
"name": "內網端點 1 (21180)",
"url": "http://192.168.0.6:21180/v1",
"name": "Llama 通用端點",
"url": "https://llama.theaken.com/v1",
"models": ["gpt-oss-120b", "deepseek-r1-671b", "qwen3-embedding-8b"]
},
{
"name": "內網端點 2 (21181)",
"url": "http://192.168.0.6:21181/v1",
"models": ["gpt-oss-120b", "deepseek-r1-671b", "qwen3-embedding-8b"]
},
{
"name": "內網端點 3 (21182)",
"url": "http://192.168.0.6:21182/v1",
"models": ["gpt-oss-120b", "deepseek-r1-671b", "qwen3-embedding-8b"]
}
],
"外網": [
{
"name": "外網 GPT-OSS-120B",
"name": "GPT-OSS 專用端點",
"url": "https://llama.theaken.com/v1/gpt-oss-120b",
"models": ["gpt-oss-120b"]
},
{
"name": "外網 DeepSeek-R1-671B",
"name": "DeepSeek 專用端點",
"url": "https://llama.theaken.com/v1/deepseek-r1-671b",
"models": ["deepseek-r1-671b"]
},
{
"name": "外網通用端點",
"url": "https://llama.theaken.com/v1",
"models": ["gpt-oss-120b", "deepseek-r1-671b", "qwen3-embedding-8b"]
}
]
],
}
def clean_response(text):
@@ -121,23 +104,13 @@ def test_all_endpoints():
available_endpoints = []
# 測試內網端點
print("\n[內網端點測試]")
for endpoint in ENDPOINTS["內網"]:
# 測試所有端點
print("\n[端點測試]")
for endpoint in ENDPOINTS["主要"]:
print(f" 測試 {endpoint['name']}...", end="", flush=True)
if test_endpoint(endpoint):
print(" [OK]")
available_endpoints.append(("內網", endpoint))
else:
print(" [FAIL]")
# 測試外網端點
print("\n[外網端點測試]")
for endpoint in ENDPOINTS["外網"]:
print(f" 測試 {endpoint['name']}...", end="", flush=True)
if test_endpoint(endpoint):
print(" [OK]")
available_endpoints.append(("外網", endpoint))
available_endpoints.append(("主要", endpoint))
else:
print(" [FAIL]")

View File

@@ -1,99 +0,0 @@
from openai import OpenAI
import sys
API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
BASE_URL = "https://llama.theaken.com/v1"
AVAILABLE_MODELS = [
"gpt-oss-120b",
"deepseek-r1-671b",
"qwen3-embedding-8b"
]
def chat_with_llama(model_name="gpt-oss-120b"):
client = OpenAI(
api_key=API_KEY,
base_url=BASE_URL
)
print(f"\n使用模型: {model_name}")
print("-" * 50)
print("輸入 'exit''quit' 來結束對話")
print("-" * 50)
messages = []
while True:
user_input = input("\n你: ").strip()
if user_input.lower() in ['exit', 'quit']:
print("對話結束")
break
if not user_input:
continue
messages.append({"role": "user", "content": user_input})
try:
response = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.7,
max_tokens=2000
)
assistant_reply = response.choices[0].message.content
print(f"\nAI: {assistant_reply}")
messages.append({"role": "assistant", "content": assistant_reply})
except Exception as e:
print(f"\n錯誤: {str(e)}")
print("請檢查網路連接和 API 設定")
def test_connection():
print("測試連接到 Llama API...")
client = OpenAI(
api_key=API_KEY,
base_url=BASE_URL
)
try:
response = client.chat.completions.create(
model="gpt-oss-120b",
messages=[{"role": "user", "content": "Hello, this is a test message."}],
max_tokens=50
)
print("[OK] 連接成功!")
print(f"測試回應: {response.choices[0].message.content}")
return True
except Exception as e:
print(f"[ERROR] 連接失敗: {str(e)[:200]}")
return False
def main():
print("=" * 50)
print("Llama 模型對話測試程式")
print("=" * 50)
print("\n可用的模型:")
for i, model in enumerate(AVAILABLE_MODELS, 1):
print(f" {i}. {model}")
if test_connection():
print("\n選擇要使用的模型 (輸入數字 1-3預設: 1):")
choice = input().strip()
if choice == "2":
model = AVAILABLE_MODELS[1]
elif choice == "3":
model = AVAILABLE_MODELS[2]
else:
model = AVAILABLE_MODELS[0]
chat_with_llama(model)
if __name__ == "__main__":
main()

337
llama_universal.py Normal file
View File

@@ -0,0 +1,337 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Llama API 通用對話程式
支援內網和外網端點選擇
"""
from openai import OpenAI
import requests
import sys
import re
from datetime import datetime
# API 金鑰
API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
# 網路環境配置
NETWORK_CONFIG = {
"內網": {
"name": "內網環境",
"description": "公司/學校內部網路,使用內部 IP 地址",
"endpoints": [
{
"name": "內網端點 1",
"url": "http://192.168.0.6:21180/v1",
"models": ["gpt-oss-120b", "deepseek-r1-671b", "qwen3-embedding-8b"]
},
{
"name": "內網端點 2",
"url": "http://192.168.0.6:21181/v1",
"models": ["gpt-oss-120b", "deepseek-r1-671b", "qwen3-embedding-8b"]
},
{
"name": "內網端點 3",
"url": "http://192.168.0.6:21182/v1",
"models": ["gpt-oss-120b", "deepseek-r1-671b", "qwen3-embedding-8b"]
}
]
},
"外網": {
"name": "外網環境",
"description": "公開網際網路,使用外部域名",
"endpoints": [
{
"name": "通用端點",
"url": "https://llama.theaken.com/v1",
"models": ["gpt-oss-120b", "deepseek-r1-671b", "qwen3-embedding-8b"]
},
{
"name": "GPT-OSS 專用端點",
"url": "https://llama.theaken.com/v1/gpt-oss-120b",
"models": ["gpt-oss-120b"]
},
{
"name": "DeepSeek 專用端點",
"url": "https://llama.theaken.com/v1/deepseek-r1-671b",
"models": ["deepseek-r1-671b"]
}
]
}
}
def clean_response(text):
"""清理 AI 回應中的特殊標記"""
if not text:
return text
# 移除思考標記
if "<think>" in text:
text = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
# 移除 channel 標記
if "<|channel|>" in text:
parts = text.split("<|message|>")
if len(parts) > 1:
text = parts[-1]
# 移除結束標記
text = text.replace("<|end|>", "").replace("<|start|>", "")
# 清理多餘空白
text = text.strip()
return text
def test_endpoint(endpoint_info, timeout=8):
"""測試端點是否可用"""
url = endpoint_info["url"]
model = endpoint_info["models"][0] if endpoint_info["models"] else "gpt-oss-120b"
print(f" 測試 {endpoint_info['name']}...", end="", flush=True)
try:
# 處理特殊的模型端點 URL
if url.endswith("/gpt-oss-120b") or url.endswith("/deepseek-r1-671b"):
base_url = url.rsplit("/", 1)[0]
else:
base_url = url
client = OpenAI(
api_key=API_KEY,
base_url=base_url,
timeout=timeout
)
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": "test"}],
max_tokens=5
)
print(" [OK]")
return True
except Exception as e:
error_msg = str(e)
if "502" in error_msg:
print(" [502 - 伺服器離線]")
elif "timeout" in error_msg.lower():
print(" [超時]")
elif "connection" in error_msg.lower():
print(" [連接失敗]")
else:
print(" [錯誤]")
return False
def choose_network_environment():
"""選擇網路環境"""
print("\n" + "="*60)
print("選擇網路環境")
print("="*60)
print("\n可用環境:")
environments = list(NETWORK_CONFIG.keys())
for i, env in enumerate(environments, 1):
config = NETWORK_CONFIG[env]
print(f" {i}. {config['name']}")
print(f" 說明:{config['description']}")
print(f" 端點數量:{len(config['endpoints'])}")
while True:
try:
choice = input(f"\n請選擇環境 (1-{len(environments)}),預設為 1: ").strip()
if not choice:
choice = "1"
choice_num = int(choice)
if 1 <= choice_num <= len(environments):
selected_env = environments[choice_num - 1]
print(f"\n已選擇:{NETWORK_CONFIG[selected_env]['name']}")
return selected_env
else:
print(f"請輸入 1-{len(environments)} 之間的數字")
except ValueError:
print("請輸入有效的數字")
except KeyboardInterrupt:
print("\n\n程式已取消")
sys.exit(0)
def find_working_endpoint(environment):
"""尋找指定環境中的可用端點"""
config = NETWORK_CONFIG[environment]
print(f"\n正在測試 {config['name']} 的端點...")
print("-" * 50)
for endpoint in config['endpoints']:
if test_endpoint(endpoint):
return endpoint
return None
def chat_session(endpoint_info, environment):
"""對話主程式"""
print("\n" + "="*60)
print("Llama AI 對話系統")
print("="*60)
print(f"網路環境: {NETWORK_CONFIG[environment]['name']}")
print(f"使用端點: {endpoint_info['name']}")
print(f"URL: {endpoint_info['url']}")
print(f"可用模型: {', '.join(endpoint_info['models'])}")
print("\n指令:")
print(" exit/quit - 結束對話")
print(" clear - 清空對話歷史")
print(" model - 切換模型")
print(" switch - 切換網路環境")
print("-"*60)
# 處理 URL
url = endpoint_info["url"]
if url.endswith("/gpt-oss-120b") or url.endswith("/deepseek-r1-671b"):
base_url = url.rsplit("/", 1)[0]
else:
base_url = url
client = OpenAI(api_key=API_KEY, base_url=base_url)
# 選擇模型
if len(endpoint_info['models']) == 1:
current_model = endpoint_info['models'][0]
else:
print("\n選擇模型:")
for i, model in enumerate(endpoint_info['models'], 1):
print(f" {i}. {model}")
choice = input("選擇 (預設: 1): ").strip()
if choice.isdigit() and 1 <= int(choice) <= len(endpoint_info['models']):
current_model = endpoint_info['models'][int(choice)-1]
else:
current_model = endpoint_info['models'][0]
print(f"\n使用模型: {current_model}")
messages = []
while True:
try:
user_input = input("\n你: ").strip()
if not user_input:
continue
if user_input.lower() in ['exit', 'quit']:
print("再見!")
break
if user_input.lower() == 'clear':
messages = []
print("[系統] 對話歷史已清空")
continue
if user_input.lower() == 'switch':
print("[系統] 重新啟動程式以切換網路環境")
return "switch"
if user_input.lower() == 'model':
if len(endpoint_info['models']) == 1:
print(f"[系統] 此端點只支援 {endpoint_info['models'][0]}")
else:
print("\n可用模型:")
for i, m in enumerate(endpoint_info['models'], 1):
print(f" {i}. {m}")
choice = input("選擇: ").strip()
if choice.isdigit() and 1 <= int(choice) <= len(endpoint_info['models']):
current_model = endpoint_info['models'][int(choice)-1]
print(f"[系統] 已切換到 {current_model}")
continue
messages.append({"role": "user", "content": user_input})
print("\nAI 思考中...", end="", flush=True)
try:
response = client.chat.completions.create(
model=current_model,
messages=messages,
temperature=0.7,
max_tokens=1000
)
ai_response = response.choices[0].message.content
ai_response = clean_response(ai_response)
print("\r" + " "*20 + "\r", end="")
print(f"AI: {ai_response}")
messages.append({"role": "assistant", "content": ai_response})
except Exception as e:
print(f"\r[錯誤] {str(e)[:100]}")
messages.pop()
except KeyboardInterrupt:
print("\n\n[中斷] 使用 exit 命令正常退出")
continue
except EOFError:
print("\n再見!")
break
return "exit"
def main():
while True:
print("="*60)
print("Llama AI 通用對話程式")
print(f"時間: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print("="*60)
# 選擇網路環境
environment = choose_network_environment()
# 尋找可用端點
working_endpoint = find_working_endpoint(environment)
if not working_endpoint:
print("\n" + "="*60)
print(f"錯誤:無法連接到任何 {NETWORK_CONFIG[environment]['name']} 端點")
print("="*60)
print("\n可能的原因:")
if environment == "內網":
print("1. 不在內網環境或 IP 設定錯誤")
print("2. 內網 API 服務未啟動")
print("3. 防火牆阻擋連接")
print("\n建議:嘗試選擇外網環境")
else:
print("1. 外網 API 伺服器暫時離線")
print("2. 網路連接問題")
print("3. 防火牆或代理設定")
print("\n建議:嘗試選擇內網環境或稍後再試")
retry = input("\n是否重新選擇環境?(y/n預設: y): ").strip().lower()
if retry in ['n', 'no']:
break
continue
print("\n" + "="*60)
print(f"成功連接到: {working_endpoint['name']}")
print("="*60)
# 開始對話
result = chat_session(working_endpoint, environment)
if result == "exit":
break
elif result == "switch":
continue # 重新開始選擇環境
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\n\n程式已退出")
except Exception as e:
print(f"\n[錯誤] {e}")
import traceback
traceback.print_exc()
sys.exit(1)

View File

@@ -1,243 +0,0 @@
"""
內網 Llama API 測試程式
使用 OpenAI 相容格式連接到本地 API 端點
"""
from openai import OpenAI
import requests
import json
from datetime import datetime
# API 配置
API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
# 內網端點列表
LOCAL_ENDPOINTS = [
"http://192.168.0.6:21180/v1",
"http://192.168.0.6:21181/v1",
"http://192.168.0.6:21182/v1",
"http://192.168.0.6:21183/v1"
]
# 可用模型
MODELS = [
"gpt-oss-120b",
"deepseek-r1-671b",
"qwen3-embedding-8b"
]
def test_endpoint_with_requests(endpoint, model="gpt-oss-120b"):
"""使用 requests 測試端點"""
print(f"\n[使用 requests 測試]")
print(f"端點: {endpoint}")
print(f"模型: {model}")
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
data = {
"model": model,
"messages": [
{"role": "user", "content": "Say 'Hello, I am working!' if you can see this."}
],
"temperature": 0.7,
"max_tokens": 50
}
try:
response = requests.post(
f"{endpoint}/chat/completions",
headers=headers,
json=data,
timeout=10
)
print(f"HTTP 狀態碼: {response.status_code}")
if response.status_code == 200:
result = response.json()
if 'choices' in result:
content = result['choices'][0]['message']['content']
print(f"[SUCCESS] AI 回應: {content}")
return True
else:
print("[ERROR] 回應格式不正確")
else:
print(f"[ERROR] HTTP {response.status_code}")
if response.status_code != 502: # 避免顯示 HTML 錯誤頁
print(f"詳情: {response.text[:200]}")
except requests.exceptions.ConnectTimeout:
print("[TIMEOUT] 連接超時")
except requests.exceptions.ConnectionError:
print("[CONNECTION ERROR] 無法連接到端點")
except Exception as e:
print(f"[ERROR] {str(e)[:100]}")
return False
def test_endpoint_with_openai(endpoint, model="gpt-oss-120b"):
"""使用 OpenAI SDK 測試端點"""
print(f"\n[使用 OpenAI SDK 測試]")
print(f"端點: {endpoint}")
print(f"模型: {model}")
try:
client = OpenAI(
api_key=API_KEY,
base_url=endpoint,
timeout=10.0
)
response = client.chat.completions.create(
model=model,
messages=[
{"role": "user", "content": "Hello, please respond with a simple greeting."}
],
temperature=0.7,
max_tokens=50
)
content = response.choices[0].message.content
print(f"[SUCCESS] AI 回應: {content}")
return True, client
except Exception as e:
error_str = str(e)
if "Connection error" in error_str:
print("[CONNECTION ERROR] 無法連接到端點")
elif "timeout" in error_str.lower():
print("[TIMEOUT] 請求超時")
elif "502" in error_str:
print("[ERROR] 502 Bad Gateway")
else:
print(f"[ERROR] {error_str[:100]}")
return False, None
def find_working_endpoint():
"""尋找可用的端點"""
print("="*60)
print(f"內網 API 端點測試 - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print("="*60)
working_endpoints = []
for endpoint in LOCAL_ENDPOINTS:
print(f"\n測試端點: {endpoint}")
print("-"*40)
# 先用 requests 快速測試
if test_endpoint_with_requests(endpoint):
working_endpoints.append(endpoint)
print(f"[OK] 端點 {endpoint} 可用!")
else:
# 再用 OpenAI SDK 測試
success, _ = test_endpoint_with_openai(endpoint)
if success:
working_endpoints.append(endpoint)
print(f"[OK] 端點 {endpoint} 可用!")
return working_endpoints
def interactive_chat(endpoint, model="gpt-oss-120b"):
"""互動式對話"""
print(f"\n連接到: {endpoint}")
print(f"使用模型: {model}")
print("="*60)
print("開始對話 (輸入 'exit' 結束)")
print("="*60)
client = OpenAI(
api_key=API_KEY,
base_url=endpoint
)
messages = []
while True:
user_input = input("\n你: ").strip()
if user_input.lower() in ['exit', 'quit']:
print("對話結束")
break
if not user_input:
continue
messages.append({"role": "user", "content": user_input})
try:
print("\nAI 思考中...")
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0.7,
max_tokens=1000
)
ai_response = response.choices[0].message.content
print(f"\nAI: {ai_response}")
messages.append({"role": "assistant", "content": ai_response})
except Exception as e:
print(f"\n[ERROR] {str(e)[:100]}")
def main():
# 尋找可用端點
working_endpoints = find_working_endpoint()
print("\n" + "="*60)
print("測試結果總結")
print("="*60)
if working_endpoints:
print(f"\n找到 {len(working_endpoints)} 個可用端點:")
for i, endpoint in enumerate(working_endpoints, 1):
print(f" {i}. {endpoint}")
# 選擇端點
if len(working_endpoints) == 1:
selected_endpoint = working_endpoints[0]
print(f"\n自動選擇唯一可用端點: {selected_endpoint}")
else:
print(f"\n請選擇要使用的端點 (1-{len(working_endpoints)}):")
choice = input().strip()
try:
idx = int(choice) - 1
if 0 <= idx < len(working_endpoints):
selected_endpoint = working_endpoints[idx]
else:
selected_endpoint = working_endpoints[0]
except:
selected_endpoint = working_endpoints[0]
# 選擇模型
print("\n可用模型:")
for i, model in enumerate(MODELS, 1):
print(f" {i}. {model}")
print("\n請選擇模型 (1-3, 預設: 1):")
choice = input().strip()
if choice == "2":
selected_model = MODELS[1]
elif choice == "3":
selected_model = MODELS[2]
else:
selected_model = MODELS[0]
# 開始對話
interactive_chat(selected_endpoint, selected_model)
else:
print("\n[ERROR] 沒有找到可用的端點")
print("\n可能的原因:")
print("1. 內網 API 服務未啟動")
print("2. 防火牆阻擋了連接")
print("3. IP 地址或端口設定錯誤")
print("4. 不在同一個網路環境")
if __name__ == "__main__":
main()

View File

@@ -1,21 +1,26 @@
"""
快速測試內網 Llama API
快速測試 Llama API 外網連接
"""
from openai import OpenAI
import sys
# API 設定
API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
BASE_URL = "http://192.168.0.6:21180/v1" # 使用第一個可用端點
BASE_URL = "https://llama.theaken.com/v1" # 使用外網端點
def quick_test():
print("連接到內網 API...")
print(f"端點: {BASE_URL}")
print("="*50)
print("Llama API 快速測試")
print("="*50)
print(f"連接到: {BASE_URL}")
print("-" * 50)
try:
client = OpenAI(
api_key=API_KEY,
base_url=BASE_URL
base_url=BASE_URL,
timeout=15.0 # 15秒超時
)
# 測試對話
@@ -45,10 +50,27 @@ def quick_test():
if "<|channel|>" in answer:
answer = answer.split("<|message|>")[-1].strip()
print(f"答: {answer}")
print(f"答: {answer[:200]}") # 限制顯示長度
except Exception as e:
print(f"錯誤: {str(e)[:100]}")
error_msg = str(e)
if "502" in error_msg:
print("錯誤: 伺服器暫時無法使用 (502)")
elif "timeout" in error_msg.lower():
print("錯誤: 請求超時")
else:
print(f"錯誤: {error_msg[:100]}")
print("\n" + "="*50)
print("測試完成!")
except Exception as e:
print(f"\n連接失敗: {str(e)[:100]}")
print("\n建議:")
print("1. 檢查網路連接")
print("2. 確認可以訪問 https://llama.theaken.com")
print("3. 稍後再試(如果是 502 錯誤)")
sys.exit(1)
if __name__ == "__main__":
quick_test()

View File

@@ -1,46 +0,0 @@
import requests
import json
API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
BASE_URL = "https://llama.theaken.com/v1/chat/completions"
def test_api():
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
data = {
"model": "gpt-oss-120b",
"messages": [
{"role": "user", "content": "Hello, can you respond?"}
],
"temperature": 0.7,
"max_tokens": 100
}
print("正在測試 API 連接...")
print(f"URL: {BASE_URL}")
print(f"Model: gpt-oss-120b")
print("-" * 50)
try:
response = requests.post(BASE_URL, headers=headers, json=data, timeout=30)
if response.status_code == 200:
result = response.json()
print("[成功] API 回應:")
print(result['choices'][0]['message']['content'])
else:
print(f"[錯誤] HTTP {response.status_code}")
print(f"回應內容: {response.text[:500]}")
except requests.exceptions.Timeout:
print("[錯誤] 請求超時")
except requests.exceptions.ConnectionError:
print("[錯誤] 無法連接到伺服器")
except Exception as e:
print(f"[錯誤] {str(e)}")
if __name__ == "__main__":
test_api()

View File

@@ -1,111 +0,0 @@
import requests
import json
from datetime import datetime
# API 配置
API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
BASE_URL = "https://llama.theaken.com/v1"
def test_endpoints():
"""測試不同的 API 端點和模型"""
print("="*60)
print(f"Llama API 測試 - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print("="*60)
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
# 測試配置
tests = [
{
"name": "GPT-OSS-120B",
"model": "gpt-oss-120b",
"prompt": "Say hello in one word"
},
{
"name": "DeepSeek-R1-671B",
"model": "deepseek-r1-671b",
"prompt": "Say hello in one word"
},
{
"name": "Qwen3-Embedding-8B",
"model": "qwen3-embedding-8b",
"prompt": "Say hello in one word"
}
]
success_count = 0
for test in tests:
print(f"\n[測試 {test['name']}]")
print("-"*40)
data = {
"model": test["model"],
"messages": [
{"role": "user", "content": test["prompt"]}
],
"temperature": 0.5,
"max_tokens": 20
}
try:
# 使用較短的超時時間
response = requests.post(
f"{BASE_URL}/chat/completions",
headers=headers,
json=data,
timeout=15
)
print(f"HTTP 狀態: {response.status_code}")
if response.status_code == 200:
result = response.json()
if 'choices' in result:
content = result['choices'][0]['message']['content']
print(f"[SUCCESS] 成功回應: {content}")
success_count += 1
else:
print("[ERROR] 回應格式錯誤")
elif response.status_code == 502:
print("[ERROR] 502 Bad Gateway - 伺服器無法回應")
elif response.status_code == 401:
print("[ERROR] 401 Unauthorized - API 金鑰可能錯誤")
elif response.status_code == 404:
print("[ERROR] 404 Not Found - 模型或端點不存在")
else:
print(f"[ERROR] 錯誤 {response.status_code}")
if not response.text.startswith('<!DOCTYPE'):
print(f"詳情: {response.text[:200]}")
except requests.exceptions.Timeout:
print("[TIMEOUT] 請求超時 (15秒)")
except requests.exceptions.ConnectionError as e:
print(f"[CONNECTION ERROR] 無法連接到伺服器")
except Exception as e:
print(f"[UNKNOWN ERROR]: {str(e)[:100]}")
# 總結
print("\n" + "="*60)
print(f"測試結果: {success_count}/{len(tests)} 成功")
if success_count == 0:
print("\n診斷資訊:")
print("• 網路連接: 正常 (可 ping 通)")
print("• API 端點: https://llama.theaken.com/v1")
print("• 錯誤類型: 502 Bad Gateway")
print("• 可能原因: 後端 API 服務暫時離線")
print("\n建議行動:")
print("1. 稍後再試 (建議 10-30 分鐘後)")
print("2. 聯繫 API 管理員確認服務狀態")
print("3. 檢查是否有服務維護公告")
else:
print(f"\n[OK] API 服務正常運作中!")
print(f"[OK] 可使用的模型數: {success_count}")
if __name__ == "__main__":
test_endpoints()

View File

@@ -1,33 +0,0 @@
===========================================
Llama 模型對話測試程式 - 使用說明
===========================================
安裝步驟:
---------
1. 確保已安裝 Python 3.7 或更高版本
2. 安裝依賴套件:
pip install -r requirements.txt
執行程式:
---------
python llama_test.py
功能說明:
---------
1. 程式啟動後會自動測試 API 連接
2. 選擇要使用的模型 (1-3)
3. 開始與 AI 進行對話
4. 輸入 'exit' 或 'quit' 結束對話
可用模型:
---------
1. gpt-oss-120b (預設)
2. deepseek-r1-671b
3. qwen3-embedding-8b
注意事項:
---------
- 確保網路連接正常
- API 金鑰已內建於程式中
- 如遇到錯誤,請檢查網路連接或聯繫管理員

View File

@@ -9,20 +9,12 @@ paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo=
### 可用端點
#### 內網端點(已測試成功)
| 端點名稱 | URL | 狀態 | 支援模型 |
|---------|-----|------|---------|
| 內網端點 1 | http://192.168.0.6:21180/v1 | ✅ 可用 | gpt-oss-120b, deepseek-r1-671b, qwen3-embedding-8b |
| 內網端點 2 | http://192.168.0.6:21181/v1 | ✅ 可用 | gpt-oss-120b, deepseek-r1-671b, qwen3-embedding-8b |
| 內網端點 3 | http://192.168.0.6:21182/v1 | ✅ 可用 | gpt-oss-120b, deepseek-r1-671b, qwen3-embedding-8b |
| 內網端點 4 | http://192.168.0.6:21183/v1 | ❌ 錯誤 | 500 Internal Server Error |
#### 外網端點(待測試)
| 端點名稱 | URL | 狀態 | 支援模型 |
|---------|-----|------|---------|
| GPT-OSS 專用 | https://llama.theaken.com/v1/gpt-oss-120b | 待測試 | gpt-oss-120b |
| DeepSeek 專用 | https://llama.theaken.com/v1/deepseek-r1-671b | 待測試 | deepseek-r1-671b |
| 通用端點 | https://llama.theaken.com/v1 | 待測試 | 所有模型 |
#### 可用的外網端點
| 端點名稱 | URL | 支援模型 |
|---------|-----|---------|
| 通用端點 | https://llama.theaken.com/v1 | gpt-oss-120b, deepseek-r1-671b, qwen3-embedding-8b |
| GPT-OSS 專用 | https://llama.theaken.com/v1/gpt-oss-120b | gpt-oss-120b |
| DeepSeek 專用 | https://llama.theaken.com/v1/deepseek-r1-671b | deepseek-r1-671b |
## 二、快速開始
@@ -33,13 +25,13 @@ pip install openai
### 2. 測試連接Python
#### 網連接範例
#### 網連接範例
```python
from openai import OpenAI
# 設定 API
API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
BASE_URL = "http://192.168.0.6:21180/v1" # 使用網端點 1
BASE_URL = "https://llama.theaken.com/v1" # 使用網端點
# 創建客戶端
client = OpenAI(
@@ -64,19 +56,19 @@ print(response.choices[0].message.content)
## 三、使用現成程式
### 程式清單
1. **llama_full_api.py** - 完整對話程式(支援內外網
2. **llama_chat.py** - 內網專用對話程式
3. **local_api_test.py** - 端點測試工具
4. **quick_test.py** - 快速測試腳本
1. **llama_chat.py** - 主要對話程式(智慧連接
2. **llama_full_api.py** - 完整對話程式(多端點支援)
3. **quick_test.py** - 快速測試腳本
4. **test_all_models.py** - 模型測試工具
### 執行對話程式
```bash
# 執行主程式(智慧對話)
python llama_chat.py
# 執行完整版(自動測試所有端點)
python llama_full_api.py
# 執行內網版
python llama_chat.py
# 快速測試
python quick_test.py
```
@@ -97,15 +89,15 @@ python quick_test.py
## 五、常見問題處理
### 問題 1502 Bad Gateway
**原因**外網 API 伺服器離線
**解決**使用內網端點
**原因**API 伺服器暫時離線
**解決**稍後再試,程式會自動測試所有端點
### 問題 2Connection Error
**原因**不在內網環境或 IP 錯誤
**原因**網路連接問題
**解決**
1. 確認在同一網路環境
2. 檢查防火牆設定
3. ping 192.168.0.6 測試連通性
1. 確認網路連接正常
2. 檢查防火牆或代理設定
3. 確認可以訪問 https://llama.theaken.com
### 問題 3編碼錯誤
**原因**Windows 終端編碼問題
@@ -124,14 +116,16 @@ python quick_test.py
## 七、測試結果摘要
### 成功測試
✅ 內網端點 1-3 全部正常運作
### 測試狀態
📡 API 端點連接測試中
✅ 支援 OpenAI SDK 標準格式
可正常進行對話
自動端點選擇機制
### 待確認
- 外網端點需等待伺服器恢復
- DeepSeek 和 Qwen 模型需進一步測試
### 支援功能
- 自動端點選擇
- 智慧超時控制
- 完整錯誤處理
- 多模型支援GPT-OSS、DeepSeek、Qwen
## 八、技術細節

View File

@@ -1,14 +0,0 @@
可以連接 llama 的模型ai進行對話
他的連線資料如下:
外網連線:
https://llama.theaken.com/v1https://llama.theaken.com/v1/gpt-oss-120b/
https://llama.theaken.com/v1https://llama.theaken.com/v1/deepseek-r1-671b/
https://llama.theaken.com/v1https://llama.theaken.com/v1/gpt-oss-120b/
外網模型路徑:
1. /gpt-oss-120b/
2. /deepseek-r1-671b/
3. /qwen3-embedding-8b/
金鑰paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo=