Files
SalesPipeline/backend/app/routers/lab.py
2026-01-16 18:16:33 +08:00

495 lines
18 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from typing import List, Optional
from datetime import datetime, timedelta
from fastapi import APIRouter, Depends, Query
from sqlalchemy.orm import Session
from sqlalchemy import func, and_
from pydantic import BaseModel
from app.models import get_db
from app.models.sample import SampleRecord
from app.models.order import OrderRecord
router = APIRouter(prefix="/lab", tags=["Lab"])
class LabKPI(BaseModel):
converted_count: int # 成功收單總數
avg_velocity: float # 平均轉換時間 (天)
conversion_rate: float # 轉換比例 (%)
orphan_count: int # 孤兒樣品總數
class ConversionRecord(BaseModel):
customer: str
pn: str
sample_date: str
sample_qty: int
order_date: str
order_qty: int
days_to_convert: int
# ... (ScatterPoint and OrphanSample classes remain same)
class ScatterPoint(BaseModel):
customer: str
pn: str
sample_qty: int
order_qty: int
class OrphanSample(BaseModel):
customer: str
pn: str
days_since_sent: int
order_no: str
date: str
# ... (parse_date function remains same)
# Helper to build order lookups
from app.services.fuzzy_matcher import normalize_pn_for_matching, normalize_customer_name
def build_order_lookups(orders):
order_lookup_by_id = {}
order_lookup_by_name = {}
for o in orders:
clean_pn = normalize_pn_for_matching(o.pn)
clean_cust_id = o.cust_id.strip().upper() if o.cust_id else ""
norm_cust_name = normalize_customer_name(o.customer)
o_date = parse_date(o.date) or (o.created_at.replace(tzinfo=None) if o.created_at else datetime.max)
data = {
"date": o_date,
"qty": o.qty or 0,
"order_no": o.order_no
}
if clean_cust_id:
key_id = (clean_cust_id, clean_pn)
if key_id not in order_lookup_by_id: order_lookup_by_id[key_id] = []
order_lookup_by_id[key_id].append(data)
key_name = (norm_cust_name, clean_pn)
if key_name not in order_lookup_by_name: order_lookup_by_name[key_name] = []
order_lookup_by_name[key_name].append(data)
return order_lookup_by_id, order_lookup_by_name
@router.get("/conversions", response_model=List[ConversionRecord])
def get_conversions(db: Session = Depends(get_db)):
# 找出所有樣品
samples = db.query(SampleRecord).all()
# 找出所有訂單
orders = db.query(OrderRecord).all()
order_lookup_by_id, order_lookup_by_name = build_order_lookups(orders)
conversions = []
# We want to list "Sample Records" that successfully converted.
# Or "Groups"? The user said "list of sample sent and their order qty".
# Listing each sample record seems appropriate.
for s in samples:
clean_pn = normalize_pn_for_matching(s.pn)
norm_cust_name = normalize_customer_name(s.customer)
clean_cust_id = s.cust_id.strip().upper() if s.cust_id else ""
s_date = parse_date(s.date)
matched_orders = []
# 1. Try via ID
if clean_cust_id:
if (clean_cust_id, clean_pn) in order_lookup_by_id:
matched_orders.extend(order_lookup_by_id[(clean_cust_id, clean_pn)])
# 2. Try via Name (Fallback)
if not matched_orders:
if (norm_cust_name, clean_pn) in order_lookup_by_name:
matched_orders.extend(order_lookup_by_name[(norm_cust_name, clean_pn)])
if matched_orders and s_date:
# Sort orders by date
matched_orders.sort(key=lambda x: x["date"])
first_order = matched_orders[0]
# Simple aggregations if multiple orders? User asked for "their order qty".
# showing total order qty for this PN/Cust might be better
total_order_qty = sum(o["qty"] for o in matched_orders)
days_diff = (first_order["date"] - s_date).days
# Filter unrealistic past orders?
# if days_diff < 0: continue # Optional
conversions.append(ConversionRecord(
customer=s.customer,
pn=s.pn,
sample_date=s.date,
sample_qty=s.qty or 0,
order_date=first_order["date"].strftime("%Y-%m-%d"), # First order date
order_qty=total_order_qty,
days_to_convert=days_diff
))
# Sort by recent sample date
return sorted(conversions, key=lambda x: x.sample_date, reverse=True)
def parse_date(date_str: str) -> Optional[datetime]:
if not date_str:
return None
val = str(date_str).strip()
# Try parsing YYYYMMDD
if len(val) == 8 and val.isdigit():
try:
return datetime.strptime(val, "%Y%m%d")
except ValueError:
pass
for fmt in ("%Y-%m-%d", "%Y/%m/%d", "%Y-%m-%d %H:%M:%S", "%Y/%m/%d %H:%M:%S", "%d-%b-%y"):
try:
return datetime.strptime(str(date_str).split(' ')[0], fmt.split(' ')[0])
except ValueError:
continue
return None
@router.get("/kpi", response_model=LabKPI)
def get_lab_kpi(
start_date: Optional[str] = Query(None),
end_date: Optional[str] = Query(None),
db: Session = Depends(get_db)
):
# 1. 取得所有樣品與訂單
samples_query = db.query(SampleRecord)
orders_query = db.query(OrderRecord)
if start_date:
samples_query = samples_query.filter(SampleRecord.date >= start_date)
orders_query = orders_query.filter(OrderRecord.date >= start_date)
if end_date:
samples_query = samples_query.filter(SampleRecord.date <= end_date)
orders_query = orders_query.filter(OrderRecord.date <= end_date)
samples = samples_query.all()
orders = orders_query.all()
# 建立群組 (ERP Code + PN)
# ERP Code correspond to cust_id
from app.services.fuzzy_matcher import normalize_pn_for_matching
sample_groups = {}
for s in samples:
# Use simple normalization like stripping spaces
clean_pn = normalize_pn_for_matching(s.pn)
clean_cust = s.cust_id.strip().upper() if s.cust_id else ""
key = (clean_cust, clean_pn)
if key not in sample_groups:
sample_groups[key] = []
sample_groups[key].append(s)
order_groups = {}
for o in orders:
clean_pn = normalize_pn_for_matching(o.pn)
clean_cust = o.cust_id.strip().upper() if o.cust_id else ""
key = (clean_cust, clean_pn)
if key not in order_groups:
order_groups[key] = []
order_groups[key].append(o)
# 計算 Velocity 與 轉換率
velocities = []
converted_samples_count = 0
total_samples_count = len(samples)
# Re-use the lookup maps built above if possible, but we need to build them first.
# Let's rebuild lookups here for clarity or refactor.
# To be safe and clean, let's just implement the loop here.
from app.services.fuzzy_matcher import normalize_pn_for_matching, normalize_customer_name
order_lookup_by_id = {}
order_lookup_by_name = {}
for o in orders:
clean_pn = normalize_pn_for_matching(o.pn)
clean_cust_id = o.cust_id.strip().upper() if o.cust_id else ""
norm_cust_name = normalize_customer_name(o.customer)
o_date = parse_date(o.date) or (o.created_at.replace(tzinfo=None) if o.created_at else datetime.max)
if clean_cust_id:
key_id = (clean_cust_id, clean_pn)
if key_id not in order_lookup_by_id: order_lookup_by_id[key_id] = []
order_lookup_by_id[key_id].append(o_date)
key_name = (norm_cust_name, clean_pn)
if key_name not in order_lookup_by_name: order_lookup_by_name[key_name] = []
order_lookup_by_name[key_name].append(o_date)
# Group Samples by (CustName, PN) for calculation to avoid double counting if multiple samples -> same order
# Actually, "Conversion Rate" is usually "Percentage of Sample Records that resulted in Order".
# Or "Percentage of Projects". Let's stick to "Sample Groups" (Unique trials).
unique_sample_groups = {} # (norm_cust_name, clean_pn) -> list of sample dates
for s in samples:
clean_pn = normalize_pn_for_matching(s.pn)
norm_cust_name = normalize_customer_name(s.customer)
clean_cust_id = s.cust_id.strip().upper() if s.cust_id else ""
key = (norm_cust_name, clean_pn) # Group by Name+PN
if key not in unique_sample_groups:
unique_sample_groups[key] = {
"dates": [],
"cust_ids": set()
}
s_date = parse_date(s.date)
if s_date: unique_sample_groups[key]["dates"].append(s_date)
if clean_cust_id: unique_sample_groups[key]["cust_ids"].add(clean_cust_id)
# Calculate
total_samples_count = len(unique_sample_groups) # Total "Projects"
converted_count = 0
orphan_count = 0
now = datetime.now()
for key, data in unique_sample_groups.items():
norm_cust_name, clean_pn = key
# Try finding orders
matched_dates = []
# 1. Try via ID
for cid in data["cust_ids"]:
if (cid, clean_pn) in order_lookup_by_id:
matched_dates.extend(order_lookup_by_id[(cid, clean_pn)])
# 2. Try via Name
if not matched_dates:
if key in order_lookup_by_name:
matched_dates.extend(order_lookup_by_name[key])
if matched_dates:
converted_count += 1
# Velocity
earliest_sample = min(data["dates"]) if data["dates"] else None
# Filter orders that came AFTER sample? Or just first order?
# Typically first order date.
first_order = min(matched_dates) if matched_dates else None
if earliest_sample and first_order:
diff = (first_order - earliest_sample).days
if diff >= 0:
velocities.append(diff)
else:
# Check Orphan (No Order)
# Use earliest sample date
earliest_sample = min(data["dates"]) if data["dates"] else None
if earliest_sample and (now - earliest_sample).days > 90:
orphan_count += 1
avg_velocity = sum(velocities) / len(velocities) if velocities else 0
conversion_rate = (converted_count / total_samples_count * 100) if total_samples_count > 0 else 0
return LabKPI(
converted_count=converted_count,
avg_velocity=round(avg_velocity, 1),
conversion_rate=round(conversion_rate, 1),
orphan_count=orphan_count
)
@router.get("/scatter", response_model=List[ScatterPoint])
def get_scatter_data(
start_date: Optional[str] = Query(None),
end_date: Optional[str] = Query(None),
db: Session = Depends(get_db)
):
samples_query = db.query(SampleRecord)
orders_query = db.query(OrderRecord)
if start_date:
samples_query = samples_query.filter(SampleRecord.date >= start_date)
if end_date:
samples_query = samples_query.filter(SampleRecord.date <= end_date)
samples = samples_query.all()
orders = orders_query.all()
# 聚合資料
from app.services.fuzzy_matcher import normalize_pn_for_matching, normalize_customer_name
# 建立多重索引的 Order Lookup
# order_lookup_by_id: (cust_id, pn) -> Order Data
# order_lookup_by_name: (cust_name, pn) -> Order Data
order_lookup_by_id = {}
order_lookup_by_name = {}
for o in orders:
clean_pn = normalize_pn_for_matching(o.pn)
clean_cust_id = o.cust_id.strip().upper() if o.cust_id else ""
norm_cust_name = normalize_customer_name(o.customer)
# Aggregate by Cust ID
if clean_cust_id:
key_id = (clean_cust_id, clean_pn)
if key_id not in order_lookup_by_id:
order_lookup_by_id[key_id] = {"qty": 0, "dates": []}
order_lookup_by_id[key_id]["qty"] += (o.qty or 0)
if o.date: order_lookup_by_id[key_id]["dates"].append(parse_date(o.date) or datetime.max)
elif o.created_at: order_lookup_by_id[key_id]["dates"].append(o.created_at.replace(tzinfo=None))
# Aggregate by Cust Name (Fallback)
key_name = (norm_cust_name, clean_pn)
if key_name not in order_lookup_by_name:
order_lookup_by_name[key_name] = {"qty": 0, "dates": []}
order_lookup_by_name[key_name]["qty"] += (o.qty or 0)
if o.date: order_lookup_by_name[key_name]["dates"].append(parse_date(o.date) or datetime.max)
elif o.created_at: order_lookup_by_name[key_name]["dates"].append(o.created_at.replace(tzinfo=None))
final_data_map = {} # Key (Display Customer, Original PN) -> Data
for s in samples:
clean_pn = normalize_pn_for_matching(s.pn)
clean_cust_id = s.cust_id.strip().upper() if s.cust_id else ""
norm_cust_name = normalize_customer_name(s.customer)
# 嘗試比對 Order
matched_order = None
# 1. Try Cust ID match
if clean_cust_id:
matched_order = order_lookup_by_id.get((clean_cust_id, clean_pn))
# 2. If no match, Try Cust Name match
if not matched_order:
matched_order = order_lookup_by_name.get((norm_cust_name, clean_pn))
# Render Key using Sample's info
display_key = (s.customer, s.pn)
if display_key not in final_data_map:
final_data_map[display_key] = {"sample_qty": 0, "order_qty": 0, "customer": s.customer, "orignal_pn": s.pn}
final_data_map[display_key]["sample_qty"] += (s.qty or 0)
if matched_order:
# 注意:這裡簡單累加可能會導致重複計算如果多個樣品對應同一個訂單聚合
# 但目前邏輯是以「樣品」為基底看轉換,所以我們顯示該樣品對應到的訂單總量是合理的
# 不過為了 scatter plot 的準確性,我們應該只在第一次遇到這個 key 時加上 order qty?
# 或者Scatter Plot 的點是 (Customer, PN),所以我們應該是把這個 Group 的 Sample Qty 和 Order Qty 放在一起。
# Order Qty 已經在 lookup 裡聚合過了。
pass
# Re-construct the final map properly merging Order Data
# 上面的迴圈有點問題,因為我們是依據 Sample 來建立點,但 Order 總量是固定的。
# 正確做法:以 (Customer, PN) 為 Unique Key。
unique_groups = {} # (norm_cust_name, clean_pn) -> {display_cust, display_pn, sample_qty, order_qty}
for s in samples:
clean_pn = normalize_pn_for_matching(s.pn)
norm_cust_name = normalize_customer_name(s.customer)
key = (norm_cust_name, clean_pn)
if key not in unique_groups:
unique_groups[key] = {
"display_cust": s.customer,
"display_pn": s.pn,
"sample_qty": 0,
"order_qty": 0,
"matched": False
}
unique_groups[key]["sample_qty"] += (s.qty or 0)
# Fill in Order Qty
for key, data in unique_groups.items():
norm_cust_name, clean_pn = key
# Try finding orders
# Note: We rely on Name match here primarily since we grouped by Name.
# Ideally we should also check CustID if available on the samples in this group, but grouping by Name is safer for visual scatter plot.
matched_order = order_lookup_by_name.get((norm_cust_name, clean_pn))
# If no name match, maybe check if any sample in this group had a CustId that matches?
# For simplicity, let's stick to Name+PN for the Scatter Plot aggregation
if matched_order:
data["order_qty"] = matched_order["qty"]
data["matched"] = True
data_map = unique_groups # Replace old data_map logic
# 如果有訂單但沒樣品,我們在 ROI 分析中可能不顯示,或者顯示在 Y 軸上 X=0。
# 根據需求:分析「樣品寄送」與「訂單接收」的關聯,通常以有送樣的為基底。
return [
ScatterPoint(
customer=v["display_cust"],
pn=v["display_pn"],
sample_qty=v["sample_qty"],
order_qty=v["order_qty"]
)
for key, v in data_map.items()
]
@router.get("/orphans", response_model=List[OrphanSample])
def get_orphans(db: Session = Depends(get_db)):
now = datetime.now()
threshold_date = now - timedelta(days=90)
# 找出所有樣品
samples = db.query(SampleRecord).all()
# 找出所有訂單
orders = db.query(OrderRecord).all()
# Build Order Lookups (ID and Name)
from app.services.fuzzy_matcher import normalize_pn_for_matching, normalize_customer_name
order_keys_id = set()
order_keys_name = set()
for o in orders:
clean_pn = normalize_pn_for_matching(o.pn)
clean_cust_id = o.cust_id.strip().upper() if o.cust_id else ""
norm_cust_name = normalize_customer_name(o.customer)
if clean_cust_id:
order_keys_id.add((clean_cust_id, clean_pn))
order_keys_name.add((norm_cust_name, clean_pn))
orphans = []
for s in samples:
clean_pn = normalize_pn_for_matching(s.pn)
norm_cust_name = normalize_customer_name(s.customer)
clean_cust_id = s.cust_id.strip().upper() if s.cust_id else ""
s_date = parse_date(s.date)
# Check match
matched = False
if clean_cust_id:
if (clean_cust_id, clean_pn) in order_keys_id:
matched = True
if not matched:
if (norm_cust_name, clean_pn) in order_keys_name:
matched = True
if not matched:
if s_date and s_date < threshold_date:
orphans.append(OrphanSample(
customer=s.customer,
pn=s.pn,
days_since_sent=(now - s_date).days,
order_no=s.order_no,
date=s.date
))
return sorted(orphans, key=lambda x: x.days_since_sent, reverse=True)