import pandas as pd import os import numpy as np def process_with_rounding(input_path, final_filename): """ 讀取Excel,執行分組聚合,轉置,計算統計數據(包含PPK)並四捨五入至小數點第三位,最後儲存。 """ try: print(f"正在讀取檔案: {input_path}") df = pd.read_excel(input_path, sheet_name='Sheet1', engine='xlrd') print("檔案讀取成功。") # --- 1. 根據位置定義欄位 --- id_cols_indices = [2, 6, 8, 9, 10] # C, G, I, J, K id_vars_names = df.columns[id_cols_indices].tolist() value_col_start_index = 19 # T欄位 value_vars = df.columns[value_col_start_index:].tolist() special_cat_col_name = df.columns[6] lsl_col_name = df.columns[9] usl_col_name = df.columns[10] # --- 2. 修正分組鍵,確保空值準確性 --- def to_grouping_str(x): if not pd.notna(x): return '' if isinstance(x, (int, float)) and x == int(x): return str(int(x)) return str(x) df[special_cat_col_name] = df[special_cat_col_name].apply(to_grouping_str) df[lsl_col_name] = df[lsl_col_name].apply(to_grouping_str) df[usl_col_name] = df[usl_col_name].apply(to_grouping_str) print("已將分組鍵轉換為文字以進行精確分組。") # --- 3. 執行分組與聚合 --- def flatten_group_values(series): return [item for item in series.values.flatten() if pd.notna(item)] print("開始進行分組與數據合併...") grouped = df.groupby(id_vars_names, dropna=False)[value_vars] aggregated_series = grouped.apply(flatten_group_values) if aggregated_series.empty or all(len(v) == 0 for v in aggregated_series): print("警告:分組後未發現任何可合併的數據。") return # --- 4. 計算統計數據與PPK,並進行四捨五入 --- print("正在為每個分組計算統計數據與PPK...") final_df = aggregated_series.reset_index(name='Aggregated_Values') def calculate_and_round_stats(row): values = pd.Series(row['Aggregated_Values']) lsl_str = row[lsl_col_name] usl_str = row[usl_col_name] if values.empty: return pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan]) mean = values.mean() std = values.std() min_val = values.min() max_val = values.max() ppk = np.nan if std is not None and std > 0: try: usl = float(usl_str) has_usl = True except (ValueError, TypeError): has_usl = False try: lsl = float(lsl_str) has_lsl = True except (ValueError, TypeError): has_lsl = False if has_usl and has_lsl: ppu = (usl - mean) / (3 * std) ppl = (mean - lsl) / (3 * std) ppk = min(ppu, ppl) elif has_usl: ppk = (usl - mean) / (3 * std) elif has_lsl: ppk = (mean - lsl) / (3 * std) # *** 修改:對所有結果進行四捨五入到小數點後三位 *** return pd.Series([ round(min_val, 3) if pd.notna(min_val) else min_val, round(max_val, 3) if pd.notna(max_val) else max_val, round(mean, 3) if pd.notna(mean) else mean, round(std, 3) if pd.notna(std) else std, round(ppk, 3) if pd.notna(ppk) else ppk ]) stats_df = final_df.apply(calculate_and_round_stats, axis=1) stats_df.columns = ['最小值', '最大值', '平均值', '標準差', 'PPK'] stats_with_ids = pd.concat([final_df[id_vars_names], stats_df], axis=1) stats_transposed = stats_with_ids.set_index(id_vars_names).T print("統計數據計算與格式化完成。") # --- 5. 準備並轉置主要數據 --- print("正在準備與轉置主要數據...") expanded_values = final_df['Aggregated_Values'].apply(pd.Series) expanded_values.columns = [i + 1 for i in range(expanded_values.shape[1])] result_df = pd.concat([final_df[id_vars_names], expanded_values], axis=1) transposed_df = result_df.set_index(id_vars_names).T transposed_df.index.name = "量測值編號" print("主要數據轉置完成。") # --- 6. 合併主要數據與統計數據 --- final_result_df = pd.concat([transposed_df, stats_transposed]) print("已將統計結果附加到數據末尾。") # --- 7. 儲存最終檔案 --- output_dir = os.path.dirname(input_path) final_output_path = os.path.join(output_dir, final_filename) final_result_df.to_excel(final_output_path, index=True, engine='openpyxl') print(f"成功!格式化後的最終檔案已儲存至: {final_output_path}") except FileNotFoundError: print(f"錯誤:找不到檔案 {input_path}") except Exception as e: print(f"處理過程中發生未預期的錯誤: {e}") if __name__ == "__main__": # 這個區塊現在僅供直接執行此腳本時測試用 # 當作為模組被 app.py 匯入時,此區塊不會被執行 print("此腳本現在是作為一個模組,請透過 app.py 啟動網頁服務來使用。") # 以下是測試範例,您可以取消註解來進行單獨測試: # input_file_path = r'GA25072023.xls' # 假設測試檔案在同個資料夾 # final_file_name = 'GA25072023_final_rounded_test.xlsx' # process_with_rounding(input_file_path, final_file_name)