上傳檔案到「/」

This commit is contained in:
2025-08-07 15:40:21 +08:00
parent 4982dd1bc0
commit e8a098476f
5 changed files with 298 additions and 0 deletions

132
transform_data.py Normal file
View File

@@ -0,0 +1,132 @@
import pandas as pd
import os
import numpy as np
def process_with_rounding(input_path, final_filename):
"""
讀取Excel執行分組聚合轉置計算統計數據(包含PPK)並四捨五入至小數點第三位,最後儲存。
"""
try:
print(f"正在讀取檔案: {input_path}")
df = pd.read_excel(input_path, sheet_name='Sheet1', engine='xlrd')
print("檔案讀取成功。")
# --- 1. 根據位置定義欄位 ---
id_cols_indices = [2, 6, 8, 9, 10] # C, G, I, J, K
id_vars_names = df.columns[id_cols_indices].tolist()
value_col_start_index = 19 # T欄位
value_vars = df.columns[value_col_start_index:].tolist()
special_cat_col_name = df.columns[6]
lsl_col_name = df.columns[9]
usl_col_name = df.columns[10]
# --- 2. 修正分組鍵,確保空值準確性 ---
def to_grouping_str(x):
if not pd.notna(x): return ''
if isinstance(x, (int, float)) and x == int(x): return str(int(x))
return str(x)
df[special_cat_col_name] = df[special_cat_col_name].apply(to_grouping_str)
df[lsl_col_name] = df[lsl_col_name].apply(to_grouping_str)
df[usl_col_name] = df[usl_col_name].apply(to_grouping_str)
print("已將分組鍵轉換為文字以進行精確分組。")
# --- 3. 執行分組與聚合 ---
def flatten_group_values(series):
return [item for item in series.values.flatten() if pd.notna(item)]
print("開始進行分組與數據合併...")
grouped = df.groupby(id_vars_names, dropna=False)[value_vars]
aggregated_series = grouped.apply(flatten_group_values)
if aggregated_series.empty or all(len(v) == 0 for v in aggregated_series):
print("警告:分組後未發現任何可合併的數據。")
return
# --- 4. 計算統計數據與PPK並進行四捨五入 ---
print("正在為每個分組計算統計數據與PPK...")
final_df = aggregated_series.reset_index(name='Aggregated_Values')
def calculate_and_round_stats(row):
values = pd.Series(row['Aggregated_Values'])
lsl_str = row[lsl_col_name]
usl_str = row[usl_col_name]
if values.empty:
return pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan])
mean = values.mean()
std = values.std()
min_val = values.min()
max_val = values.max()
ppk = np.nan
if std is not None and std > 0:
try:
usl = float(usl_str)
has_usl = True
except (ValueError, TypeError): has_usl = False
try:
lsl = float(lsl_str)
has_lsl = True
except (ValueError, TypeError): has_lsl = False
if has_usl and has_lsl:
ppu = (usl - mean) / (3 * std)
ppl = (mean - lsl) / (3 * std)
ppk = min(ppu, ppl)
elif has_usl:
ppk = (usl - mean) / (3 * std)
elif has_lsl:
ppk = (mean - lsl) / (3 * std)
# *** 修改:對所有結果進行四捨五入到小數點後三位 ***
return pd.Series([
round(min_val, 3) if pd.notna(min_val) else min_val,
round(max_val, 3) if pd.notna(max_val) else max_val,
round(mean, 3) if pd.notna(mean) else mean,
round(std, 3) if pd.notna(std) else std,
round(ppk, 3) if pd.notna(ppk) else ppk
])
stats_df = final_df.apply(calculate_and_round_stats, axis=1)
stats_df.columns = ['最小值', '最大值', '平均值', '標準差', 'PPK']
stats_with_ids = pd.concat([final_df[id_vars_names], stats_df], axis=1)
stats_transposed = stats_with_ids.set_index(id_vars_names).T
print("統計數據計算與格式化完成。")
# --- 5. 準備並轉置主要數據 ---
print("正在準備與轉置主要數據...")
expanded_values = final_df['Aggregated_Values'].apply(pd.Series)
expanded_values.columns = [i + 1 for i in range(expanded_values.shape[1])]
result_df = pd.concat([final_df[id_vars_names], expanded_values], axis=1)
transposed_df = result_df.set_index(id_vars_names).T
transposed_df.index.name = "量測值編號"
print("主要數據轉置完成。")
# --- 6. 合併主要數據與統計數據 ---
final_result_df = pd.concat([transposed_df, stats_transposed])
print("已將統計結果附加到數據末尾。")
# --- 7. 儲存最終檔案 ---
output_dir = os.path.dirname(input_path)
final_output_path = os.path.join(output_dir, final_filename)
final_result_df.to_excel(final_output_path, index=True, engine='openpyxl')
print(f"成功!格式化後的最終檔案已儲存至: {final_output_path}")
except FileNotFoundError:
print(f"錯誤:找不到檔案 {input_path}")
except Exception as e:
print(f"處理過程中發生未預期的錯誤: {e}")
if __name__ == "__main__":
# 這個區塊現在僅供直接執行此腳本時測試用
# 當作為模組被 app.py 匯入時,此區塊不會被執行
print("此腳本現在是作為一個模組,請透過 app.py 啟動網頁服務來使用。")
# 以下是測試範例,您可以取消註解來進行單獨測試:
# input_file_path = r'GA25072023.xls' # 假設測試檔案在同個資料夾
# final_file_name = 'GA25072023_final_rounded_test.xlsx'
# process_with_rounding(input_file_path, final_file_name)