Added support for preserving and rendering inline style variations within text elements (e.g., bold/italic/color changes mid-line). Span Extraction (direct_extraction_engine.py): 1. Parse PyMuPDF span data with font, size, flags, color per span 2. Create DocumentElement children for each span with StyleInfo 3. Store spans in element.children for downstream rendering 4. Extract span-specific bbox from PyMuPDF (lines 434-453) Span Rendering (pdf_generator_service.py): 1. Implement _draw_text_with_spans() method (lines 1685-1734) - Iterate through span children - Apply per-span styling via _apply_text_style - Track X position and calculate widths - Return total rendered width 2. Integrate in _draw_text_element_direct() (lines 1822-1823, 1905-1914) - Check for element.children (has_spans flag) - Use span rendering for first line - Fall back to normal rendering for list items 3. Add span count to debug logging Features: - Inline font changes (Arial → Times → Courier) - Inline size changes (12pt → 14pt → 10pt) - Inline style changes (normal → bold → italic) - Inline color changes (black → red → blue) Limitations (future work): - Currently renders all spans on first line only - Multi-line span support requires line breaking logic - List items use single-style rendering (compatibility) Direct track only (OCR track has no span information). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
790 lines
29 KiB
Python
790 lines
29 KiB
Python
"""
|
||
Direct Extraction Engine using PyMuPDF
|
||
|
||
Handles direct text and structure extraction from editable PDFs without OCR.
|
||
This provides much faster processing and perfect accuracy for documents with
|
||
extractable text.
|
||
"""
|
||
|
||
import os
|
||
import logging
|
||
import fitz # PyMuPDF
|
||
import uuid
|
||
from pathlib import Path
|
||
from typing import Dict, List, Optional, Tuple, Any, Union
|
||
from datetime import datetime
|
||
import re
|
||
|
||
from ..models.unified_document import (
|
||
UnifiedDocument, DocumentElement, Page, DocumentMetadata,
|
||
BoundingBox, StyleInfo, TableData, TableCell, Dimensions,
|
||
ElementType, ProcessingTrack
|
||
)
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
class DirectExtractionEngine:
|
||
"""
|
||
Engine for direct text extraction from editable PDFs using PyMuPDF.
|
||
|
||
This engine provides:
|
||
- Fast text extraction with exact positioning
|
||
- Font and style information preservation
|
||
- Table structure detection
|
||
- Image extraction with coordinates
|
||
- Hyperlink and annotation extraction
|
||
"""
|
||
|
||
def __init__(self,
|
||
enable_table_detection: bool = True,
|
||
enable_image_extraction: bool = True,
|
||
min_table_rows: int = 2,
|
||
min_table_cols: int = 2):
|
||
"""
|
||
Initialize the extraction engine.
|
||
|
||
Args:
|
||
enable_table_detection: Whether to detect and extract tables
|
||
enable_image_extraction: Whether to extract images
|
||
min_table_rows: Minimum rows for table detection
|
||
min_table_cols: Minimum columns for table detection
|
||
"""
|
||
self.enable_table_detection = enable_table_detection
|
||
self.enable_image_extraction = enable_image_extraction
|
||
self.min_table_rows = min_table_rows
|
||
self.min_table_cols = min_table_cols
|
||
|
||
def extract(self,
|
||
file_path: Path,
|
||
output_dir: Optional[Path] = None) -> UnifiedDocument:
|
||
"""
|
||
Extract content from PDF file to UnifiedDocument format.
|
||
|
||
Args:
|
||
file_path: Path to PDF file
|
||
output_dir: Optional directory to save extracted images
|
||
|
||
Returns:
|
||
UnifiedDocument with extracted content
|
||
"""
|
||
start_time = datetime.now()
|
||
document_id = str(uuid.uuid4())
|
||
|
||
try:
|
||
doc = fitz.open(str(file_path))
|
||
|
||
# Extract document metadata
|
||
metadata = self._extract_metadata(file_path, doc, start_time)
|
||
|
||
# Extract pages
|
||
pages = []
|
||
for page_num in range(len(doc)):
|
||
logger.info(f"Extracting page {page_num + 1}/{len(doc)}")
|
||
page = self._extract_page(
|
||
doc[page_num],
|
||
page_num + 1,
|
||
document_id,
|
||
output_dir
|
||
)
|
||
pages.append(page)
|
||
|
||
doc.close()
|
||
|
||
# Calculate processing time
|
||
processing_time = (datetime.now() - start_time).total_seconds()
|
||
metadata.processing_time = processing_time
|
||
|
||
logger.info(f"Direct extraction completed in {processing_time:.2f}s")
|
||
|
||
return UnifiedDocument(
|
||
document_id=document_id,
|
||
metadata=metadata,
|
||
pages=pages
|
||
)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error during direct extraction: {e}")
|
||
# Return partial result with error information
|
||
processing_time = (datetime.now() - start_time).total_seconds()
|
||
|
||
if 'metadata' not in locals():
|
||
metadata = DocumentMetadata(
|
||
filename=file_path.name,
|
||
file_type="pdf",
|
||
file_size=file_path.stat().st_size if file_path.exists() else 0,
|
||
created_at=datetime.now(),
|
||
processing_track=ProcessingTrack.DIRECT,
|
||
processing_time=processing_time
|
||
)
|
||
|
||
return UnifiedDocument(
|
||
document_id=document_id,
|
||
metadata=metadata,
|
||
pages=pages if 'pages' in locals() else [],
|
||
processing_errors=[{
|
||
"error": str(e),
|
||
"type": type(e).__name__
|
||
}]
|
||
)
|
||
|
||
def _extract_metadata(self,
|
||
file_path: Path,
|
||
doc: fitz.Document,
|
||
start_time: datetime) -> DocumentMetadata:
|
||
"""Extract document metadata"""
|
||
pdf_metadata = doc.metadata
|
||
|
||
return DocumentMetadata(
|
||
filename=file_path.name,
|
||
file_type="pdf",
|
||
file_size=file_path.stat().st_size,
|
||
created_at=start_time,
|
||
processing_track=ProcessingTrack.DIRECT,
|
||
processing_time=0.0, # Will be updated later
|
||
title=pdf_metadata.get("title"),
|
||
author=pdf_metadata.get("author"),
|
||
subject=pdf_metadata.get("subject"),
|
||
keywords=pdf_metadata.get("keywords", "").split(",") if pdf_metadata.get("keywords") else None,
|
||
producer=pdf_metadata.get("producer"),
|
||
creator=pdf_metadata.get("creator"),
|
||
creation_date=self._parse_pdf_date(pdf_metadata.get("creationDate")),
|
||
modification_date=self._parse_pdf_date(pdf_metadata.get("modDate"))
|
||
)
|
||
|
||
def _parse_pdf_date(self, date_str: str) -> Optional[datetime]:
|
||
"""Parse PDF date string to datetime"""
|
||
if not date_str:
|
||
return None
|
||
|
||
try:
|
||
# PDF date format: D:YYYYMMDDHHmmSSOHH'mm
|
||
# Example: D:20240101120000+09'00
|
||
if date_str.startswith("D:"):
|
||
date_str = date_str[2:]
|
||
|
||
# Extract just the date/time part (first 14 characters)
|
||
if len(date_str) >= 14:
|
||
date_part = date_str[:14]
|
||
return datetime.strptime(date_part, "%Y%m%d%H%M%S")
|
||
except:
|
||
pass
|
||
|
||
return None
|
||
|
||
def _extract_page(self,
|
||
page: fitz.Page,
|
||
page_num: int,
|
||
document_id: str,
|
||
output_dir: Optional[Path]) -> Page:
|
||
"""Extract content from a single page"""
|
||
elements = []
|
||
element_counter = 0
|
||
|
||
# Get page dimensions
|
||
rect = page.rect
|
||
dimensions = Dimensions(
|
||
width=rect.width,
|
||
height=rect.height,
|
||
dpi=72 # PDF standard DPI
|
||
)
|
||
|
||
# Extract text blocks with formatting
|
||
text_dict = page.get_text("dict")
|
||
for block_idx, block in enumerate(text_dict.get("blocks", [])):
|
||
if block.get("type") == 0: # Text block
|
||
element = self._process_text_block(
|
||
block, page_num, element_counter
|
||
)
|
||
if element:
|
||
elements.append(element)
|
||
element_counter += 1
|
||
|
||
# Extract tables (if enabled)
|
||
if self.enable_table_detection:
|
||
try:
|
||
# Try native table detection (PyMuPDF 1.23.0+)
|
||
tables = page.find_tables()
|
||
for table_idx, table in enumerate(tables):
|
||
element = self._process_native_table(
|
||
table, page_num, element_counter
|
||
)
|
||
if element:
|
||
elements.append(element)
|
||
element_counter += 1
|
||
except AttributeError:
|
||
# Fallback to positional table detection
|
||
logger.debug("Native table detection not available, using positional detection")
|
||
table_elements = self._detect_tables_by_position(page, page_num, element_counter)
|
||
elements.extend(table_elements)
|
||
element_counter += len(table_elements)
|
||
|
||
# Extract images (if enabled)
|
||
if self.enable_image_extraction:
|
||
image_elements = self._extract_images(
|
||
page, page_num, document_id, element_counter, output_dir
|
||
)
|
||
elements.extend(image_elements)
|
||
element_counter += len(image_elements)
|
||
|
||
# Extract hyperlinks
|
||
links = page.get_links()
|
||
for link_idx, link in enumerate(links):
|
||
# Create link annotation element if it has URI
|
||
if link.get("uri"):
|
||
from_rect = link.get("from")
|
||
if from_rect:
|
||
element = DocumentElement(
|
||
element_id=f"link_{page_num}_{element_counter}",
|
||
type=ElementType.REFERENCE,
|
||
content={"uri": link["uri"], "type": "hyperlink"},
|
||
bbox=BoundingBox(
|
||
x0=from_rect.x0,
|
||
y0=from_rect.y0,
|
||
x1=from_rect.x1,
|
||
y1=from_rect.y1
|
||
),
|
||
metadata={"link_type": "external" if link["uri"].startswith("http") else "internal"}
|
||
)
|
||
elements.append(element)
|
||
element_counter += 1
|
||
|
||
# Extract vector graphics (as metadata)
|
||
drawings = page.get_drawings()
|
||
if drawings:
|
||
logger.debug(f"Page {page_num} contains {len(drawings)} vector drawing commands")
|
||
|
||
# Post-process elements for header/footer detection and structure
|
||
elements = self._detect_headers_footers(elements, dimensions)
|
||
elements = self._build_section_hierarchy(elements)
|
||
elements = self._build_nested_lists(elements)
|
||
|
||
return Page(
|
||
page_number=page_num,
|
||
elements=elements,
|
||
dimensions=dimensions,
|
||
metadata={
|
||
"has_drawings": len(drawings) > 0,
|
||
"drawing_count": len(drawings),
|
||
"link_count": len(links)
|
||
}
|
||
)
|
||
|
||
def _detect_headers_footers(self, elements: List[DocumentElement], dimensions: Dimensions) -> List[DocumentElement]:
|
||
"""Detect and mark header/footer elements based on page position"""
|
||
page_height = dimensions.height
|
||
header_threshold = page_height * 0.1 # Top 10% of page
|
||
footer_threshold = page_height * 0.9 # Bottom 10% of page
|
||
|
||
for elem in elements:
|
||
# Skip non-text elements
|
||
if not elem.is_text:
|
||
continue
|
||
|
||
# Check if element is in header region
|
||
if elem.bbox.y1 <= header_threshold:
|
||
# Only mark as header if it's short text
|
||
if isinstance(elem.content, str) and len(elem.content) < 200:
|
||
elem.type = ElementType.HEADER
|
||
elem.metadata['is_page_header'] = True
|
||
|
||
# Check if element is in footer region
|
||
elif elem.bbox.y0 >= footer_threshold:
|
||
# Short text in footer region
|
||
if isinstance(elem.content, str) and len(elem.content) < 200:
|
||
elem.type = ElementType.FOOTER
|
||
elem.metadata['is_page_footer'] = True
|
||
|
||
return elements
|
||
|
||
def _build_section_hierarchy(self, elements: List[DocumentElement]) -> List[DocumentElement]:
|
||
"""Build hierarchical section structure based on font sizes"""
|
||
# Collect all headers with their font sizes
|
||
headers = []
|
||
for elem in elements:
|
||
if elem.type in [ElementType.TITLE, ElementType.HEADER]:
|
||
# Get average font size from style
|
||
font_size = 12.0 # Default
|
||
if elem.style and elem.style.font_size:
|
||
font_size = elem.style.font_size
|
||
headers.append((elem, font_size))
|
||
|
||
if not headers:
|
||
return elements
|
||
|
||
# Sort headers by font size to determine hierarchy levels
|
||
font_sizes = sorted(set(size for _, size in headers), reverse=True)
|
||
size_to_level = {size: level for level, size in enumerate(font_sizes, 1)}
|
||
|
||
# Assign section levels to headers
|
||
for elem, font_size in headers:
|
||
level = size_to_level.get(font_size, 1)
|
||
elem.metadata['section_level'] = level
|
||
elem.metadata['font_size'] = font_size
|
||
|
||
# Build parent-child relationships between headers
|
||
header_stack = [] # Stack of (element, level)
|
||
for elem, font_size in headers:
|
||
level = elem.metadata['section_level']
|
||
|
||
# Pop headers that are at same or lower level (larger font)
|
||
while header_stack and header_stack[-1][1] >= level:
|
||
header_stack.pop()
|
||
|
||
# Set parent header
|
||
if header_stack:
|
||
parent = header_stack[-1][0]
|
||
elem.metadata['parent_section'] = parent.element_id
|
||
if 'child_sections' not in parent.metadata:
|
||
parent.metadata['child_sections'] = []
|
||
parent.metadata['child_sections'].append(elem.element_id)
|
||
|
||
header_stack.append((elem, level))
|
||
|
||
# Link content to nearest preceding header at same or higher level
|
||
current_header = None
|
||
for elem in elements:
|
||
if elem.type in [ElementType.TITLE, ElementType.HEADER]:
|
||
current_header = elem
|
||
elif current_header and elem.type not in [ElementType.HEADER, ElementType.FOOTER]:
|
||
elem.metadata['section_id'] = current_header.element_id
|
||
|
||
return elements
|
||
|
||
def _build_nested_lists(self, elements: List[DocumentElement]) -> List[DocumentElement]:
|
||
"""Build nested list structure from flat list items"""
|
||
# Group list items
|
||
list_items = [e for e in elements if e.type == ElementType.LIST_ITEM]
|
||
if not list_items:
|
||
return elements
|
||
|
||
# Sort by position (top to bottom)
|
||
list_items.sort(key=lambda e: (e.bbox.y0, e.bbox.x0))
|
||
|
||
# Detect indentation levels based on x position
|
||
x_positions = [item.bbox.x0 for item in list_items]
|
||
if not x_positions:
|
||
return elements
|
||
|
||
min_x = min(x_positions)
|
||
indent_unit = 20 # Typical indent size in points
|
||
|
||
# Assign nesting levels
|
||
for item in list_items:
|
||
indent = item.bbox.x0 - min_x
|
||
level = int(indent / indent_unit)
|
||
item.metadata['list_level'] = level
|
||
|
||
# Build parent-child relationships
|
||
item_stack = [] # Stack of (element, level)
|
||
for item in list_items:
|
||
level = item.metadata.get('list_level', 0)
|
||
|
||
# Pop items at same or deeper level
|
||
while item_stack and item_stack[-1][1] >= level:
|
||
item_stack.pop()
|
||
|
||
# Set parent
|
||
if item_stack:
|
||
parent = item_stack[-1][0]
|
||
item.metadata['parent_item'] = parent.element_id
|
||
if 'children' not in parent.metadata:
|
||
parent.metadata['children'] = []
|
||
parent.metadata['children'].append(item.element_id)
|
||
# Also add to actual children list
|
||
parent.children.append(item)
|
||
|
||
item_stack.append((item, level))
|
||
|
||
return elements
|
||
|
||
def _process_text_block(self, block: Dict, page_num: int, counter: int) -> Optional[DocumentElement]:
|
||
"""Process a text block into a DocumentElement"""
|
||
# Calculate block bounding box
|
||
bbox_data = block.get("bbox", [0, 0, 0, 0])
|
||
bbox = BoundingBox(
|
||
x0=bbox_data[0],
|
||
y0=bbox_data[1],
|
||
x1=bbox_data[2],
|
||
y1=bbox_data[3]
|
||
)
|
||
|
||
# Extract text content and span information
|
||
text_parts = []
|
||
styles = []
|
||
span_children = [] # Store span-level children for inline styling
|
||
span_counter = 0
|
||
|
||
for line in block.get("lines", []):
|
||
for span in line.get("spans", []):
|
||
text = span.get("text", "")
|
||
if text:
|
||
text_parts.append(text)
|
||
|
||
# Extract style information
|
||
style = StyleInfo(
|
||
font_name=span.get("font"),
|
||
font_size=span.get("size"),
|
||
font_weight="bold" if span.get("flags", 0) & 2**4 else "normal",
|
||
font_style="italic" if span.get("flags", 0) & 2**1 else "normal",
|
||
text_color=span.get("color")
|
||
)
|
||
styles.append(style)
|
||
|
||
# Create span child element for inline styling
|
||
span_bbox_data = span.get("bbox", bbox_data)
|
||
span_bbox = BoundingBox(
|
||
x0=span_bbox_data[0],
|
||
y0=span_bbox_data[1],
|
||
x1=span_bbox_data[2],
|
||
y1=span_bbox_data[3]
|
||
)
|
||
|
||
span_element = DocumentElement(
|
||
element_id=f"span_{page_num}_{counter}_{span_counter}",
|
||
type=ElementType.TEXT, # Spans are always text
|
||
content=text,
|
||
bbox=span_bbox,
|
||
style=style,
|
||
confidence=1.0,
|
||
metadata={"span_index": span_counter}
|
||
)
|
||
span_children.append(span_element)
|
||
span_counter += 1
|
||
|
||
if not text_parts:
|
||
return None
|
||
|
||
full_text = "".join(text_parts)
|
||
|
||
# Determine element type based on content and style
|
||
element_type = self._infer_element_type(full_text, styles)
|
||
|
||
# Use the most common style for the block
|
||
if styles:
|
||
block_style = styles[0] # Could be improved with style merging
|
||
else:
|
||
block_style = None
|
||
|
||
return DocumentElement(
|
||
element_id=f"text_{page_num}_{counter}",
|
||
type=element_type,
|
||
content=full_text,
|
||
bbox=bbox,
|
||
style=block_style,
|
||
confidence=1.0, # Direct extraction has perfect confidence
|
||
children=span_children # Store span children for inline styling
|
||
)
|
||
|
||
def _infer_element_type(self, text: str, styles: List[StyleInfo]) -> ElementType:
|
||
"""Infer element type based on text content and styling"""
|
||
text_lower = text.lower().strip()
|
||
|
||
# Check for common patterns
|
||
if len(text_lower) < 100 and styles:
|
||
# Short text with large font might be title/header
|
||
avg_size = sum(s.font_size or 12 for s in styles) / len(styles)
|
||
if avg_size > 16:
|
||
return ElementType.TITLE
|
||
elif avg_size > 14:
|
||
return ElementType.HEADER
|
||
|
||
# Check for list patterns
|
||
if re.match(r'^[\d•·▪▫◦‣⁃]\s', text_lower):
|
||
return ElementType.LIST_ITEM
|
||
|
||
# Check for page numbers
|
||
if re.match(r'^page\s+\d+|^\d+\s*$|^-\s*\d+\s*-$', text_lower):
|
||
return ElementType.PAGE_NUMBER
|
||
|
||
# Check for footnote patterns
|
||
if re.match(r'^[\[\d+\]]|^\d+\)', text_lower):
|
||
return ElementType.FOOTNOTE
|
||
|
||
# Default to paragraph for longer text, text for shorter
|
||
return ElementType.PARAGRAPH if len(text) > 150 else ElementType.TEXT
|
||
|
||
def _process_native_table(self, table, page_num: int, counter: int) -> Optional[DocumentElement]:
|
||
"""Process a natively detected table"""
|
||
try:
|
||
# Extract table data
|
||
data = table.extract()
|
||
if not data or len(data) < self.min_table_rows:
|
||
return None
|
||
|
||
# Get table bounding box
|
||
bbox_data = table.bbox
|
||
bbox = BoundingBox(
|
||
x0=bbox_data[0],
|
||
y0=bbox_data[1],
|
||
x1=bbox_data[2],
|
||
y1=bbox_data[3]
|
||
)
|
||
|
||
# Create table cells
|
||
cells = []
|
||
for row_idx, row in enumerate(data):
|
||
for col_idx, cell_text in enumerate(row):
|
||
if cell_text:
|
||
cells.append(TableCell(
|
||
row=row_idx,
|
||
col=col_idx,
|
||
content=str(cell_text) if cell_text else ""
|
||
))
|
||
|
||
# Create table data
|
||
table_data = TableData(
|
||
rows=len(data),
|
||
cols=max(len(row) for row in data) if data else 0,
|
||
cells=cells,
|
||
headers=data[0] if data else None # Assume first row is header
|
||
)
|
||
|
||
return DocumentElement(
|
||
element_id=f"table_{page_num}_{counter}",
|
||
type=ElementType.TABLE,
|
||
content=table_data,
|
||
bbox=bbox,
|
||
confidence=1.0
|
||
)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error processing native table: {e}")
|
||
return None
|
||
|
||
def _detect_tables_by_position(self, page: fitz.Page, page_num: int, counter: int) -> List[DocumentElement]:
|
||
"""Detect tables by analyzing text positioning"""
|
||
tables = []
|
||
|
||
# Get all words with positions
|
||
words = page.get_text("words") # Returns (x0, y0, x1, y1, "word", block_no, line_no, word_no)
|
||
|
||
if not words:
|
||
return tables
|
||
|
||
# Group words by approximate row (y-coordinate)
|
||
rows = {}
|
||
for word in words:
|
||
y = round(word[1] / 5) * 5 # Round to nearest 5 points
|
||
if y not in rows:
|
||
rows[y] = []
|
||
rows[y].append({
|
||
'x0': word[0],
|
||
'y0': word[1],
|
||
'x1': word[2],
|
||
'y1': word[3],
|
||
'text': word[4],
|
||
'block': word[5] if len(word) > 5 else 0
|
||
})
|
||
|
||
# Sort rows by y-coordinate
|
||
sorted_rows = sorted(rows.items(), key=lambda x: x[0])
|
||
|
||
# Find potential tables (consecutive rows with multiple columns)
|
||
current_table_rows = []
|
||
tables_found = []
|
||
|
||
for y, words_in_row in sorted_rows:
|
||
words_in_row.sort(key=lambda w: w['x0'])
|
||
|
||
if len(words_in_row) >= self.min_table_cols:
|
||
# Check if this could be a table row
|
||
x_positions = [w['x0'] for w in words_in_row]
|
||
|
||
# Check for somewhat regular spacing
|
||
if self._has_regular_spacing(x_positions):
|
||
current_table_rows.append((y, words_in_row))
|
||
else:
|
||
# End current table if exists
|
||
if len(current_table_rows) >= self.min_table_rows:
|
||
tables_found.append(current_table_rows)
|
||
current_table_rows = []
|
||
else:
|
||
# End current table if exists
|
||
if len(current_table_rows) >= self.min_table_rows:
|
||
tables_found.append(current_table_rows)
|
||
current_table_rows = []
|
||
|
||
# Don't forget the last table
|
||
if len(current_table_rows) >= self.min_table_rows:
|
||
tables_found.append(current_table_rows)
|
||
|
||
# Convert detected tables to DocumentElements
|
||
for table_idx, table_rows in enumerate(tables_found):
|
||
if not table_rows:
|
||
continue
|
||
|
||
# Calculate table bounding box
|
||
all_words = []
|
||
for _, words in table_rows:
|
||
all_words.extend(words)
|
||
|
||
min_x = min(w['x0'] for w in all_words)
|
||
min_y = min(w['y0'] for w in all_words)
|
||
max_x = max(w['x1'] for w in all_words)
|
||
max_y = max(w['y1'] for w in all_words)
|
||
|
||
bbox = BoundingBox(x0=min_x, y0=min_y, x1=max_x, y1=max_y)
|
||
|
||
# Create table cells
|
||
cells = []
|
||
for row_idx, (y, words) in enumerate(table_rows):
|
||
# Group words into columns
|
||
columns = self._group_into_columns(words, table_rows)
|
||
for col_idx, col_text in enumerate(columns):
|
||
if col_text:
|
||
cells.append(TableCell(
|
||
row=row_idx,
|
||
col=col_idx,
|
||
content=col_text
|
||
))
|
||
|
||
# Create table data
|
||
table_data = TableData(
|
||
rows=len(table_rows),
|
||
cols=max(len(self._group_into_columns(words, table_rows))
|
||
for _, words in table_rows),
|
||
cells=cells
|
||
)
|
||
|
||
element = DocumentElement(
|
||
element_id=f"table_{page_num}_{counter + table_idx}",
|
||
type=ElementType.TABLE,
|
||
content=table_data,
|
||
bbox=bbox,
|
||
confidence=0.8, # Lower confidence for positional detection
|
||
metadata={"detection_method": "positional"}
|
||
)
|
||
tables.append(element)
|
||
|
||
return tables
|
||
|
||
def _has_regular_spacing(self, x_positions: List[float], tolerance: float = 0.3) -> bool:
|
||
"""Check if x positions have somewhat regular spacing"""
|
||
if len(x_positions) < 3:
|
||
return False
|
||
|
||
spacings = [x_positions[i+1] - x_positions[i] for i in range(len(x_positions)-1)]
|
||
avg_spacing = sum(spacings) / len(spacings)
|
||
|
||
# Check if spacings are within tolerance of average
|
||
for spacing in spacings:
|
||
if abs(spacing - avg_spacing) > avg_spacing * tolerance:
|
||
return False
|
||
|
||
return True
|
||
|
||
def _group_into_columns(self, words: List[Dict], all_rows: List) -> List[str]:
|
||
"""Group words into columns based on x-position"""
|
||
if not words:
|
||
return []
|
||
|
||
# Find common column positions across all rows
|
||
all_x_positions = []
|
||
for _, row_words in all_rows:
|
||
all_x_positions.extend([w['x0'] for w in row_words])
|
||
|
||
# Cluster x-positions to find columns
|
||
column_positions = self._cluster_positions(all_x_positions)
|
||
|
||
# Assign words to columns
|
||
columns = [""] * len(column_positions)
|
||
for word in words:
|
||
# Find closest column
|
||
closest_col = 0
|
||
min_dist = float('inf')
|
||
for col_idx, col_x in enumerate(column_positions):
|
||
dist = abs(word['x0'] - col_x)
|
||
if dist < min_dist:
|
||
min_dist = dist
|
||
closest_col = col_idx
|
||
|
||
if columns[closest_col]:
|
||
columns[closest_col] += " " + word['text']
|
||
else:
|
||
columns[closest_col] = word['text']
|
||
|
||
return columns
|
||
|
||
def _cluster_positions(self, positions: List[float], threshold: float = 20) -> List[float]:
|
||
"""Cluster positions to find common columns"""
|
||
if not positions:
|
||
return []
|
||
|
||
sorted_pos = sorted(positions)
|
||
clusters = [[sorted_pos[0]]]
|
||
|
||
for pos in sorted_pos[1:]:
|
||
# Check if position belongs to current cluster
|
||
if pos - clusters[-1][-1] < threshold:
|
||
clusters[-1].append(pos)
|
||
else:
|
||
clusters.append([pos])
|
||
|
||
# Return average position of each cluster
|
||
return [sum(cluster) / len(cluster) for cluster in clusters]
|
||
|
||
def _extract_images(self,
|
||
page: fitz.Page,
|
||
page_num: int,
|
||
document_id: str,
|
||
counter: int,
|
||
output_dir: Optional[Path]) -> List[DocumentElement]:
|
||
"""Extract images from page"""
|
||
elements = []
|
||
image_list = page.get_images()
|
||
|
||
for img_idx, img in enumerate(image_list):
|
||
try:
|
||
xref = img[0]
|
||
|
||
# Get image position(s)
|
||
img_rects = page.get_image_rects(xref)
|
||
if not img_rects:
|
||
continue
|
||
|
||
rect = img_rects[0] # Use first occurrence
|
||
bbox = BoundingBox(
|
||
x0=rect.x0,
|
||
y0=rect.y0,
|
||
x1=rect.x1,
|
||
y1=rect.y1
|
||
)
|
||
|
||
# Extract image data
|
||
pix = fitz.Pixmap(page.parent, xref)
|
||
image_data = {
|
||
"width": pix.width,
|
||
"height": pix.height,
|
||
"colorspace": pix.colorspace.name if pix.colorspace else "unknown",
|
||
"xref": xref
|
||
}
|
||
|
||
# Save image if output directory provided
|
||
if output_dir:
|
||
output_dir.mkdir(parents=True, exist_ok=True)
|
||
image_filename = f"{document_id}_p{page_num}_img{img_idx}.png"
|
||
image_path = output_dir / image_filename
|
||
pix.save(str(image_path))
|
||
image_data["saved_path"] = str(image_path)
|
||
logger.debug(f"Saved image to {image_path}")
|
||
|
||
element = DocumentElement(
|
||
element_id=f"image_{page_num}_{counter + img_idx}",
|
||
type=ElementType.IMAGE,
|
||
content=image_data,
|
||
bbox=bbox,
|
||
confidence=1.0,
|
||
metadata={
|
||
"image_index": img_idx,
|
||
"xref": xref
|
||
}
|
||
)
|
||
elements.append(element)
|
||
|
||
pix = None # Free memory
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error extracting image {img_idx}: {e}")
|
||
|
||
return elements |