Files
OCR/backend/app/services/ocr_service.py
egg 5cf4010c9b fix: 修復多頁PDF頁碼分配錯誤和logging配置問題
Critical Bug #1: 多頁PDF頁碼分配錯誤
問題:
- 在處理多頁PDF時,雖然text_regions有正確的頁碼標記
- 但layout_data.elements(表格)和images_metadata(圖片)都保持page=0
- 導致所有頁面的表格和圖片都被錯誤地繪製在第1頁
- 造成嚴重的版面錯誤、元素重疊和位置錯誤

根本原因:
- ocr_service.py (第359-372行) 在累積多頁結果時
- text_regions有添加頁碼:region['page'] = page_num
- 但images_metadata和layout_data.elements沒有更新頁碼
- 它們保持單頁處理時的默認值page=0

修復方案:
- backend/app/services/ocr_service.py (第359-372行)
  - 為layout_data.elements中的每個元素添加正確的頁碼
  - 為images_metadata中的每個圖片添加正確的頁碼
  - 確保多頁PDF的每個元素都有正確的page標記

Critical Bug #2: Logging配置被uvicorn覆蓋
問題:
- uvicorn啟動時會設置自己的logging配置
- 這會覆蓋應用程式的logging.basicConfig()
- 導致應用層的INFO/WARNING/ERROR log完全消失
- 只能看到uvicorn的HTTP請求log和第三方庫的DEBUG log
- 無法診斷PDF生成過程中的問題

修復方案:
- backend/app/main.py (第17-36行)
  - 添加force=True參數強制重新配置logging (Python 3.8+)
  - 顯式設置root logger的level
  - 配置app-specific loggers (app.services.pdf_generator_service等)
  - 啟用log propagation確保訊息能傳遞到root logger

其他修復:
- backend/app/services/pdf_generator_service.py
  - 將重要的debug logging改為info level (第371, 379, 490, 613行)
    原因:預設log level是INFO,debug log不會顯示
  - 修復max_cols UnboundLocalError (第507-509行)
    將logger.info()移到max_cols定義之後
  - 移除危險的.get('page', 0)默認值 (第762行)
    改為.get('page'),沒有page的元素會被正確跳過

影響:
 多頁PDF的表格和圖片現在會正確分配到對應頁面
 詳細的PDF生成log現在可以正確顯示(座標轉換、縮放比例等)
 能夠診斷文字擠壓、間距和位置錯誤的問題

測試建議:
1. 重新啟動後端清除Python cache
2. 上傳多頁PDF進行OCR處理
3. 檢查生成的JSON中每個元素是否有正確的page標記
4. 檢查終端log是否顯示詳細的PDF生成過程
5. 驗證生成的PDF中每頁的元素位置是否正確

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-18 12:13:25 +08:00

836 lines
35 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Tool_OCR - Core OCR Service
PaddleOCR-VL integration for text and structure extraction
"""
import json
import logging
from pathlib import Path
from typing import Dict, List, Optional, Tuple
from datetime import datetime
import uuid
from paddleocr import PaddleOCR, PPStructureV3
from PIL import Image
from pdf2image import convert_from_path
import paddle
from app.core.config import settings
from app.services.office_converter import OfficeConverter, OfficeConverterError
logger = logging.getLogger(__name__)
class OCRService:
"""
Core OCR service using PaddleOCR-VL
Handles text recognition and document structure analysis
"""
def __init__(self):
"""Initialize PaddleOCR and PPStructure engines with GPU detection"""
self.ocr_languages = settings.ocr_languages_list
self.confidence_threshold = settings.ocr_confidence_threshold
# Initialize PaddleOCR engine (will be lazy-loaded per language)
self.ocr_engines = {}
# Initialize PP-Structure for layout analysis
self.structure_engine = None
# Initialize Office document converter
self.office_converter = OfficeConverter()
# GPU Detection and Configuration
self.gpu_available = False
self.use_gpu = False
self.gpu_info = {}
self._detect_and_configure_gpu()
logger.info("OCR Service initialized")
def _detect_and_configure_gpu(self):
"""Detect GPU availability and configure usage"""
try:
# Check if forced CPU mode
if settings.force_cpu_mode:
logger.info("GPU mode forced to CPU by configuration")
self.use_gpu = False
self.gpu_info = {
'available': False,
'reason': 'CPU mode forced by configuration',
}
return
# Check if PaddlePaddle is compiled with CUDA
if paddle.is_compiled_with_cuda():
# Check if GPU devices are available
gpu_count = paddle.device.cuda.device_count()
if gpu_count > 0:
self.gpu_available = True
self.use_gpu = True
# Get GPU device information
device_id = settings.gpu_device_id if settings.gpu_device_id < gpu_count else 0
gpu_props = paddle.device.cuda.get_device_properties(device_id)
self.gpu_info = {
'available': True,
'device_count': gpu_count,
'device_id': device_id,
'device_name': gpu_props.name,
'total_memory': gpu_props.total_memory,
'compute_capability': f"{gpu_props.major}.{gpu_props.minor}",
}
# Set GPU memory fraction
try:
paddle.device.set_device(f'gpu:{device_id}')
logger.info(f"GPU {device_id} selected: {gpu_props.name}")
logger.info(f"GPU memory: {gpu_props.total_memory / (1024**3):.2f} GB")
logger.info(f"Compute capability: {gpu_props.major}.{gpu_props.minor}")
logger.info(f"GPU memory fraction set to: {settings.gpu_memory_fraction}")
except Exception as e:
logger.warning(f"Failed to configure GPU device: {e}")
self.use_gpu = False
self.gpu_info['available'] = False
self.gpu_info['reason'] = f'GPU configuration failed: {str(e)}'
else:
logger.warning("CUDA is available but no GPU devices found")
self.gpu_info = {
'available': False,
'reason': 'CUDA compiled but no GPU devices detected',
}
else:
logger.info("PaddlePaddle not compiled with CUDA support")
self.gpu_info = {
'available': False,
'reason': 'PaddlePaddle not compiled with CUDA',
}
except Exception as e:
logger.error(f"GPU detection failed: {e}")
self.use_gpu = False
self.gpu_info = {
'available': False,
'reason': f'GPU detection error: {str(e)}',
}
# Log final GPU status
if self.use_gpu:
logger.info(f"✓ GPU acceleration ENABLED - Using {self.gpu_info.get('device_name', 'Unknown GPU')}")
else:
reason = self.gpu_info.get('reason', 'Unknown')
logger.info(f" GPU acceleration DISABLED - {reason} - Using CPU mode")
def get_gpu_status(self) -> Dict:
"""
Get current GPU status and information
Returns:
Dictionary with GPU status information
"""
status = {
'gpu_enabled': self.use_gpu,
'gpu_available': self.gpu_available,
**self.gpu_info,
}
# Add current GPU memory usage if GPU is being used
if self.use_gpu and self.gpu_available:
try:
device_id = self.gpu_info.get('device_id', 0)
# Get memory info (returns allocated, total in bytes)
memory_allocated = paddle.device.cuda.memory_allocated(device_id)
memory_reserved = paddle.device.cuda.memory_reserved(device_id)
total_memory = self.gpu_info.get('total_memory', 0)
status['memory_allocated_mb'] = memory_allocated / (1024**2)
status['memory_reserved_mb'] = memory_reserved / (1024**2)
status['memory_total_mb'] = total_memory / (1024**2)
status['memory_utilization'] = (memory_allocated / total_memory * 100) if total_memory > 0 else 0
except Exception as e:
logger.warning(f"Failed to get GPU memory info: {e}")
return status
def get_ocr_engine(self, lang: str = 'ch') -> PaddleOCR:
"""
Get or create OCR engine for specified language with GPU support
Args:
lang: Language code (ch, en, japan, korean, etc.)
Returns:
PaddleOCR engine instance
"""
if lang not in self.ocr_engines:
logger.info(f"Initializing PaddleOCR engine for language: {lang} (GPU: {self.use_gpu})")
try:
# PaddleOCR 3.x: Device is set globally via paddle.set_device()
# No need to pass device/use_gpu/gpu_mem parameters
self.ocr_engines[lang] = PaddleOCR(
lang=lang,
use_textline_orientation=True, # Replaces deprecated use_angle_cls
)
logger.info(f"PaddleOCR engine ready for {lang} (PaddlePaddle {paddle.__version__}, {'GPU' if self.use_gpu else 'CPU'} mode)")
except Exception as e:
# If GPU initialization fails, fall back to CPU
if self.use_gpu:
logger.warning(f"GPU initialization failed, falling back to CPU: {e}")
self.use_gpu = False
# Switch to CPU device globally
paddle.set_device('cpu')
self.ocr_engines[lang] = PaddleOCR(
lang=lang,
use_textline_orientation=True,
)
logger.info(f"PaddleOCR engine ready for {lang} (CPU mode - fallback)")
else:
raise
return self.ocr_engines[lang]
def get_structure_engine(self) -> PPStructureV3:
"""
Get or create PP-Structure engine for layout analysis with GPU support
Returns:
PPStructure engine instance
"""
if self.structure_engine is None:
logger.info(f"Initializing PP-StructureV3 engine (GPU: {self.use_gpu})")
try:
# PaddleOCR 3.x: Device is set globally via paddle.set_device()
# No need to pass device/use_gpu/gpu_mem parameters
self.structure_engine = PPStructureV3(
use_doc_orientation_classify=False,
use_doc_unwarping=False,
use_textline_orientation=False,
use_table_recognition=True,
use_formula_recognition=True,
use_chart_recognition=True, # Enable chart recognition (requires PaddlePaddle >= 3.2.0 for fused_rms_norm_ext)
layout_threshold=0.5,
)
logger.info(f"PP-StructureV3 engine ready (PaddlePaddle {paddle.__version__}, {'GPU' if self.use_gpu else 'CPU'} mode)")
except Exception as e:
# If GPU initialization fails, fall back to CPU
if self.use_gpu:
logger.warning(f"GPU initialization failed for PP-Structure, falling back to CPU: {e}")
self.use_gpu = False
# Switch to CPU device globally
paddle.set_device('cpu')
self.structure_engine = PPStructureV3(
use_doc_orientation_classify=False,
use_doc_unwarping=False,
use_textline_orientation=False,
use_table_recognition=True,
use_formula_recognition=True,
use_chart_recognition=True, # Enable chart recognition (CPU fallback mode)
layout_threshold=0.5,
)
logger.info("PP-StructureV3 engine ready (CPU mode - fallback)")
else:
raise
return self.structure_engine
def convert_pdf_to_images(self, pdf_path: Path, output_dir: Path) -> List[Path]:
"""
Convert PDF to images (one per page)
Args:
pdf_path: Path to PDF file
output_dir: Directory to save converted images
Returns:
List of paths to converted images
"""
try:
output_dir.mkdir(parents=True, exist_ok=True)
logger.info(f"Converting PDF {pdf_path.name} to images")
# Convert PDF to images (300 DPI for good quality)
images = convert_from_path(
str(pdf_path),
dpi=300,
fmt='png'
)
image_paths = []
for i, image in enumerate(images):
# Save each page as PNG
image_path = output_dir / f"{pdf_path.stem}_page_{i+1}.png"
image.save(str(image_path), 'PNG')
image_paths.append(image_path)
logger.info(f"Saved page {i+1} to {image_path.name}")
logger.info(f"Converted {len(image_paths)} pages from PDF")
return image_paths
except Exception as e:
logger.error(f"PDF conversion error: {str(e)}")
raise
def process_image(
self,
image_path: Path,
lang: str = 'ch',
detect_layout: bool = True,
confidence_threshold: Optional[float] = None,
output_dir: Optional[Path] = None
) -> Dict:
"""
Process single image with OCR and layout analysis
Args:
image_path: Path to image file
lang: Language for OCR
detect_layout: Whether to perform layout analysis
confidence_threshold: Minimum confidence threshold (uses default if None)
Returns:
Dictionary with OCR results and metadata
"""
start_time = datetime.now()
threshold = confidence_threshold if confidence_threshold is not None else self.confidence_threshold
try:
# Check if file is Office document
if self.office_converter.is_office_document(image_path):
logger.info(f"Detected Office document: {image_path.name}, converting to PDF")
try:
# Convert Office document to PDF
pdf_path = self.office_converter.convert_to_pdf(image_path)
logger.info(f"Office document converted to PDF: {pdf_path.name}")
# Process the PDF (will be handled by PDF processing logic below)
image_path = pdf_path
except OfficeConverterError as e:
logger.error(f"Office conversion failed: {str(e)}")
raise
# Check if file is PDF
is_pdf = image_path.suffix.lower() == '.pdf'
if is_pdf:
# Convert PDF to images
logger.info(f"Detected PDF file: {image_path.name}, converting to images")
pdf_images_dir = image_path.parent / f"{image_path.stem}_pages"
image_paths = self.convert_pdf_to_images(image_path, pdf_images_dir)
# Process all pages
all_text_regions = []
total_confidence_sum = 0.0
total_valid_regions = 0
all_layout_data = []
all_images_metadata = []
all_ocr_dimensions = []
for page_num, page_image_path in enumerate(image_paths, 1):
logger.info(f"Processing PDF page {page_num}/{len(image_paths)}")
# Process each page
page_result = self.process_image(
page_image_path,
lang=lang,
detect_layout=detect_layout,
confidence_threshold=confidence_threshold,
output_dir=output_dir
)
# Accumulate results
if page_result['status'] == 'success':
# Add page number to each text region
for region in page_result['text_regions']:
region['page'] = page_num
all_text_regions.append(region)
total_confidence_sum += page_result['average_confidence'] * page_result['total_text_regions']
total_valid_regions += page_result['total_text_regions']
# Accumulate layout data and update page numbers
if page_result.get('layout_data'):
layout_data = page_result['layout_data']
# Update page number for all layout elements
if layout_data.get('elements'):
for element in layout_data['elements']:
element['page'] = page_num
all_layout_data.append(layout_data)
# Accumulate images metadata and update page numbers
if page_result.get('images_metadata'):
for img_meta in page_result['images_metadata']:
img_meta['page'] = page_num # Update page number for multi-page PDFs
all_images_metadata.extend(page_result['images_metadata'])
# Store OCR dimensions for each page
if page_result.get('ocr_dimensions'):
all_ocr_dimensions.append({
'page': page_num,
'width': page_result['ocr_dimensions']['width'],
'height': page_result['ocr_dimensions']['height']
})
# Calculate overall average confidence
avg_confidence = total_confidence_sum / total_valid_regions if total_valid_regions > 0 else 0.0
# Combine layout data from all pages
combined_layout = None
if all_layout_data:
combined_elements = []
for layout in all_layout_data:
if layout.get('elements'):
combined_elements.extend(layout['elements'])
if combined_elements:
combined_layout = {
'elements': combined_elements,
'total_elements': len(combined_elements),
'reading_order': list(range(len(combined_elements))),
}
# Generate combined markdown
markdown_content = self.generate_markdown(all_text_regions, combined_layout)
# Calculate processing time
processing_time = (datetime.now() - start_time).total_seconds()
logger.info(
f"PDF processing completed: {image_path.name} - "
f"{len(image_paths)} pages, "
f"{len(all_text_regions)} regions, "
f"{avg_confidence:.2f} avg confidence, "
f"{processing_time:.2f}s"
)
return {
'status': 'success',
'file_name': image_path.name,
'language': lang,
'text_regions': all_text_regions,
'total_text_regions': len(all_text_regions),
'average_confidence': avg_confidence,
'layout_data': combined_layout,
'images_metadata': all_images_metadata,
'markdown_content': markdown_content,
'processing_time': processing_time,
'timestamp': datetime.utcnow().isoformat(),
'total_pages': len(image_paths),
'ocr_dimensions': all_ocr_dimensions if all_ocr_dimensions else None,
}
# Get OCR engine (for non-PDF images)
ocr_engine = self.get_ocr_engine(lang)
# Get the actual image dimensions that OCR will use
from PIL import Image
with Image.open(image_path) as img:
ocr_width, ocr_height = img.size
logger.info(f"OCR processing image dimensions: {ocr_width}x{ocr_height}")
# Perform OCR
logger.info(f"Processing image: {image_path.name}")
# Note: In PaddleOCR 3.x, use_angle_cls is set during initialization, not in ocr() call
ocr_results = ocr_engine.ocr(str(image_path))
# Parse OCR results (PaddleOCR 3.x format)
text_regions = []
total_confidence = 0.0
valid_regions = 0
if ocr_results and isinstance(ocr_results, (list, tuple)) and len(ocr_results) > 0:
# PaddleOCR 3.x returns a list of dictionaries (one per page)
for page_result in ocr_results:
if isinstance(page_result, dict):
# New format: {'rec_texts': [...], 'rec_scores': [...], 'rec_polys': [...]}
texts = page_result.get('rec_texts', [])
scores = page_result.get('rec_scores', [])
polys = page_result.get('rec_polys', [])
# Process each recognized text
for idx, text in enumerate(texts):
# Get corresponding score and bbox
confidence = scores[idx] if idx < len(scores) else 1.0
bbox = polys[idx] if idx < len(polys) else []
# Convert numpy array bbox to list for JSON serialization
if hasattr(bbox, 'tolist'):
bbox = bbox.tolist()
# Filter by confidence threshold
if confidence >= threshold:
text_regions.append({
'text': text,
'bbox': bbox,
'confidence': float(confidence),
})
total_confidence += confidence
valid_regions += 1
avg_confidence = total_confidence / valid_regions if valid_regions > 0 else 0.0
logger.info(f"Parsed {len(text_regions)} text regions with avg confidence {avg_confidence:.3f}")
# Layout analysis (if requested)
layout_data = None
images_metadata = []
if detect_layout:
layout_data, images_metadata = self.analyze_layout(image_path, output_dir=output_dir)
# Generate Markdown
markdown_content = self.generate_markdown(text_regions, layout_data)
# Calculate processing time
processing_time = (datetime.now() - start_time).total_seconds()
result = {
'status': 'success',
'file_name': image_path.name,
'language': lang,
'text_regions': text_regions,
'total_text_regions': len(text_regions),
'average_confidence': avg_confidence,
'layout_data': layout_data,
'images_metadata': images_metadata,
'markdown_content': markdown_content,
'processing_time': processing_time,
'timestamp': datetime.utcnow().isoformat(),
'ocr_dimensions': {
'width': ocr_width,
'height': ocr_height
}
}
logger.info(
f"OCR completed: {image_path.name} - "
f"{len(text_regions)} regions, "
f"{avg_confidence:.2f} avg confidence, "
f"{processing_time:.2f}s"
)
return result
except Exception as e:
import traceback
error_trace = traceback.format_exc()
logger.error(f"OCR processing error for {image_path.name}: {str(e)}\n{error_trace}")
return {
'status': 'error',
'file_name': image_path.name,
'error_message': str(e),
'processing_time': (datetime.now() - start_time).total_seconds(),
}
def _extract_table_text(self, html_content: str) -> str:
"""
Extract text from HTML table content for translation purposes
Args:
html_content: HTML content containing table
Returns:
Extracted text from table cells
"""
try:
from html.parser import HTMLParser
class TableTextExtractor(HTMLParser):
def __init__(self):
super().__init__()
self.text_parts = []
self.in_table = False
def handle_starttag(self, tag, attrs):
if tag == 'table':
self.in_table = True
def handle_endtag(self, tag):
if tag == 'table':
self.in_table = False
elif tag in ('td', 'th') and self.in_table:
self.text_parts.append(' | ') # Cell separator
elif tag == 'tr' and self.in_table:
self.text_parts.append('\n') # Row separator
def handle_data(self, data):
if self.in_table:
stripped = data.strip()
if stripped:
self.text_parts.append(stripped)
parser = TableTextExtractor()
parser.feed(html_content)
# Clean up the extracted text
extracted = ''.join(parser.text_parts)
# Remove multiple separators
import re
extracted = re.sub(r'\s*\|\s*\|+\s*', ' | ', extracted)
extracted = re.sub(r'\n+', '\n', extracted)
extracted = extracted.strip()
return extracted
except Exception as e:
logger.warning(f"Failed to extract table text: {e}")
# Fallback: just remove HTML tags
import re
text = re.sub(r'<[^>]+>', ' ', html_content)
text = re.sub(r'\s+', ' ', text)
return text.strip()
def analyze_layout(self, image_path: Path, output_dir: Optional[Path] = None) -> Tuple[Optional[Dict], List[Dict]]:
"""
Analyze document layout using PP-StructureV3
Args:
image_path: Path to image file
output_dir: Optional output directory for saving extracted images (defaults to image_path.parent)
Returns:
Tuple of (layout_data, images_metadata)
"""
try:
structure_engine = self.get_structure_engine()
# Perform structure analysis using predict() method (PaddleOCR 3.x API)
logger.info(f"Running layout analysis on {image_path.name}")
results = structure_engine.predict(str(image_path))
layout_elements = []
images_metadata = []
# Process each page result (for images, usually just one page)
for page_idx, page_result in enumerate(results):
# Get markdown dictionary from result object
if hasattr(page_result, 'markdown'):
markdown_dict = page_result.markdown
logger.info(f"Page {page_idx} markdown keys: {markdown_dict.keys() if isinstance(markdown_dict, dict) else type(markdown_dict)}")
# Extract layout information from markdown structure
if isinstance(markdown_dict, dict):
# Get markdown texts (HTML format with tables and structure)
markdown_texts = markdown_dict.get('markdown_texts', '')
markdown_images = markdown_dict.get('markdown_images', {})
# Create a layout element for the structured content
if markdown_texts:
# Parse HTML content to identify tables and text
import re
# Check if content contains tables
has_table = '<table' in markdown_texts.lower()
element = {
'element_id': len(layout_elements),
'type': 'table' if has_table else 'text',
'content': markdown_texts,
'page': page_idx,
'bbox': [], # PP-StructureV3 doesn't provide individual bbox in this format
}
# Extract text from table for translation purposes
if has_table:
table_text = self._extract_table_text(markdown_texts)
element['extracted_text'] = table_text
logger.info(f"Extracted {len(table_text)} characters from table")
layout_elements.append(element)
# Add image metadata and SAVE images to disk
for img_idx, (img_path, img_obj) in enumerate(markdown_images.items()):
# Save image to disk
try:
# Determine base directory for saving images
base_dir = output_dir if output_dir else image_path.parent
# Create full path for image file
full_img_path = base_dir / img_path
# Create imgs/ subdirectory if it doesn't exist
full_img_path.parent.mkdir(parents=True, exist_ok=True)
# Save image object to disk
if hasattr(img_obj, 'save'):
# img_obj is PIL Image
img_obj.save(str(full_img_path))
logger.info(f"Saved extracted image to {full_img_path}")
else:
logger.warning(f"Image object for {img_path} does not have save() method, skipping")
except Exception as e:
logger.warning(f"Failed to save image {img_path}: {str(e)}")
# Continue processing even if image save fails
# Extract bbox from filename (format: img_in_table_box_x1_y1_x2_y2.jpg)
bbox = []
try:
import re
match = re.search(r'box_(\d+)_(\d+)_(\d+)_(\d+)', img_path)
if match:
x1, y1, x2, y2 = map(int, match.groups())
# Convert to 4-point bbox format: [[x1,y1], [x2,y1], [x2,y2], [x1,y2]]
bbox = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]]
logger.info(f"Extracted bbox from filename: {bbox}")
except Exception as e:
logger.warning(f"Failed to extract bbox from {img_path}: {e}")
images_metadata.append({
'element_id': len(layout_elements) + img_idx,
'image_path': img_path,
'type': 'image',
'page': page_idx,
'bbox': bbox,
})
if layout_elements:
layout_data = {
'elements': layout_elements,
'total_elements': len(layout_elements),
'reading_order': list(range(len(layout_elements))),
}
logger.info(f"Detected {len(layout_elements)} layout elements")
return layout_data, images_metadata
else:
logger.warning("No layout elements detected")
return None, []
except Exception as e:
import traceback
error_trace = traceback.format_exc()
logger.error(f"Layout analysis error: {str(e)}\n{error_trace}")
return None, []
def generate_markdown(
self,
text_regions: List[Dict],
layout_data: Optional[Dict] = None
) -> str:
"""
Generate Markdown from OCR results
Args:
text_regions: List of text regions with bbox and text
layout_data: Optional layout structure information
Returns:
Markdown formatted string
"""
markdown_lines = []
if layout_data and layout_data.get('elements'):
# Generate structured Markdown based on layout
for element in layout_data['elements']:
element_type = element.get('type', 'text')
content = element.get('content', '')
if element_type == 'title':
markdown_lines.append(f"# {content}\n")
elif element_type == 'table':
# Table in HTML format
markdown_lines.append(content)
markdown_lines.append("")
elif element_type == 'figure':
element_id = element.get('element_id')
markdown_lines.append(f"![Figure {element_id}](./images/img_{element_id}.jpg)\n")
else:
markdown_lines.append(f"{content}\n")
else:
# Simple Markdown from text regions only
# Sort by vertical position (top to bottom)
def get_y_coord(region):
"""Safely extract Y coordinate from bbox"""
bbox = region.get('bbox', [])
if isinstance(bbox, (list, tuple)) and len(bbox) > 0:
if isinstance(bbox[0], (list, tuple)) and len(bbox[0]) > 1:
return bbox[0][1] # [[x1,y1], [x2,y2], ...] format
elif len(bbox) > 1:
return bbox[1] # [x1, y1, x2, y2, ...] format
return 0 # Default to 0 if can't extract
sorted_regions = sorted(text_regions, key=get_y_coord)
for region in sorted_regions:
text = region['text']
markdown_lines.append(text)
return "\n".join(markdown_lines)
def save_results(
self,
result: Dict,
output_dir: Path,
file_id: str,
source_file_path: Optional[Path] = None
) -> Tuple[Optional[Path], Optional[Path], Optional[Path]]:
"""
Save OCR results to JSON, Markdown, and layout-preserving PDF files
Args:
result: OCR result dictionary
output_dir: Output directory
file_id: Unique file identifier
source_file_path: Optional path to original source file for PDF generation
Returns:
Tuple of (json_path, markdown_path, pdf_path)
"""
try:
output_dir.mkdir(parents=True, exist_ok=True)
# Save JSON
json_path = output_dir / f"{file_id}_result.json"
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(result, f, ensure_ascii=False, indent=2)
# Save Markdown
markdown_path = output_dir / f"{file_id}_output.md"
markdown_content = result.get('markdown_content', '')
with open(markdown_path, 'w', encoding='utf-8') as f:
f.write(markdown_content)
logger.info(f"Results saved: {json_path.name}, {markdown_path.name}")
# Generate layout-preserving PDF
pdf_path = None
try:
from app.services.pdf_generator_service import pdf_generator_service
pdf_filename = f"{file_id}_layout.pdf"
pdf_path = output_dir / pdf_filename
logger.info(f"Generating layout-preserving PDF: {pdf_filename}")
success = pdf_generator_service.generate_layout_pdf(
json_path=json_path,
output_path=pdf_path,
source_file_path=source_file_path
)
if success:
logger.info(f"✓ PDF generated successfully: {pdf_path.name}")
else:
logger.warning(f"✗ PDF generation failed for {file_id}")
pdf_path = None
except Exception as e:
logger.error(f"Error generating PDF for {file_id}: {str(e)}")
import traceback
traceback.print_exc()
pdf_path = None
return json_path, markdown_path, pdf_path
except Exception as e:
logger.error(f"Error saving results: {str(e)}")
return None, None, None