""" OCR to UnifiedDocument Converter Converts PP-StructureV3 OCR results to UnifiedDocument format, preserving all structure information and metadata. """ import logging from pathlib import Path from typing import Dict, List, Optional, Any, Union from datetime import datetime import hashlib from app.models.unified_document import ( UnifiedDocument, DocumentElement, Page, DocumentMetadata, BoundingBox, StyleInfo, TableData, ElementType, ProcessingTrack, TableCell, Dimensions ) logger = logging.getLogger(__name__) class OCRToUnifiedConverter: """ Converter for transforming PP-StructureV3 OCR results to UnifiedDocument format. This converter handles: - PP-StructureV3 parsing_res_list results - Markdown fallback results - Multi-page document assembly - Metadata preservation - Structure relationship mapping """ def __init__(self): """Initialize the converter.""" self.element_counter = 0 def convert( self, ocr_results: Dict[str, Any], file_path: Path, processing_time: float, lang: str = 'ch' ) -> UnifiedDocument: """ Convert OCR results to UnifiedDocument. Args: ocr_results: Raw OCR results from PP-StructureV3 file_path: Original file path processing_time: Time taken for OCR processing lang: Language used for OCR Returns: UnifiedDocument with all extracted information """ try: # Create document metadata metadata = self._create_metadata(file_path, processing_time, lang) # Extract pages from OCR results pages = self._extract_pages(ocr_results) # Create document ID document_id = self._generate_document_id(file_path) # Create UnifiedDocument unified_doc = UnifiedDocument( document_id=document_id, metadata=metadata, pages=pages, processing_errors=ocr_results.get('errors', []) ) # Post-process to establish relationships self._establish_relationships(unified_doc) logger.info(f"Successfully converted OCR results to UnifiedDocument: " f"{len(pages)} pages, {self._count_elements(pages)} elements") return unified_doc except Exception as e: logger.error(f"Error converting OCR results: {e}") import traceback logger.error(f"Traceback: {traceback.format_exc()}") # Return minimal document with error return UnifiedDocument( document_id=self._generate_document_id(file_path), metadata=self._create_metadata(file_path, processing_time, lang), pages=[], processing_errors=[{ 'error': str(e), 'type': 'conversion_error', 'timestamp': datetime.now().isoformat() }] ) def _create_metadata( self, file_path: Path, processing_time: float, lang: str ) -> DocumentMetadata: """Create document metadata.""" return DocumentMetadata( filename=file_path.name, file_type=file_path.suffix, file_size=file_path.stat().st_size if file_path.exists() else 0, created_at=datetime.now(), processing_track=ProcessingTrack.OCR, processing_time=processing_time, language=lang ) def _extract_pages(self, ocr_results: Dict[str, Any]) -> List[Page]: """ Extract pages from OCR results. Handles both enhanced PP-StructureV3 results (with parsing_res_list) and traditional markdown results. """ pages = [] # Check if we have enhanced results from PPStructureEnhanced if 'enhanced_results' in ocr_results: pages = self._extract_from_enhanced_results(ocr_results['enhanced_results']) # Check for traditional OCR results with text_regions at top level (from process_file_traditional) elif 'text_regions' in ocr_results: pages = self._extract_from_traditional_ocr(ocr_results) # Check for traditional layout_data structure elif 'layout_data' in ocr_results: pages = self._extract_from_layout_data(ocr_results['layout_data']) # Check for direct PP-StructureV3 results elif 'pages' in ocr_results: pages = self._extract_from_direct_results(ocr_results['pages']) else: logger.warning("No recognized OCR result structure found") return pages def _extract_from_enhanced_results( self, enhanced_results: List[Dict[str, Any]] ) -> List[Page]: """Extract pages from enhanced PP-StructureV3 results.""" pages = [] for page_idx, page_result in enumerate(enhanced_results): elements = [] # Process elements from parsing_res_list if 'elements' in page_result: for elem_data in page_result['elements']: element = self._convert_pp3_element(elem_data, page_idx) if element: elements.append(element) # Create page page = Page( page_number=page_idx + 1, dimensions=Dimensions( width=page_result.get('width', 0), height=page_result.get('height', 0) ), elements=elements, metadata={'reading_order': page_result.get('reading_order', [])} ) pages.append(page) logger.debug(f"Extracted page {page_idx + 1} with {len(elements)} elements") return pages def _extract_from_layout_data( self, layout_data: Dict[str, Any] ) -> List[Page]: """Extract pages from traditional layout_data structure.""" pages = [] # Get page dimensions (assuming uniform for all pages) page_width = layout_data.get('page_width', 0) page_height = layout_data.get('page_height', 0) # Group elements by page elements_by_page = {} # Process text regions for text_region in layout_data.get('text_regions', []): page_num = text_region.get('page', 1) if page_num not in elements_by_page: elements_by_page[page_num] = [] element = self._convert_text_region(text_region) if element: elements_by_page[page_num].append(element) # Process images for img_meta in layout_data.get('images_metadata', []): page_num = img_meta.get('page', 1) if page_num not in elements_by_page: elements_by_page[page_num] = [] element = self._convert_image_metadata(img_meta) if element: elements_by_page[page_num].append(element) # Process tables for table_data in layout_data.get('tables', []): page_num = table_data.get('page', 1) if page_num not in elements_by_page: elements_by_page[page_num] = [] element = self._convert_table_data(table_data) if element: elements_by_page[page_num].append(element) # Create pages max_page = max(elements_by_page.keys()) if elements_by_page else 0 for page_num in range(1, max_page + 1): elements = elements_by_page.get(page_num, []) # Determine reading order based on position reading_order = self._calculate_reading_order(elements) page = Page( page_number=page_num, dimensions=Dimensions( width=page_width, height=page_height ), elements=elements, metadata={'reading_order': reading_order} ) pages.append(page) return pages def _extract_from_traditional_ocr(self, ocr_results: Dict[str, Any]) -> List[Page]: """ Extract pages from traditional OCR results (process_file_traditional). This handles the structure where text_regions and images_metadata are at the top level of ocr_results, not nested inside layout_data. """ pages = [] # Get text regions and page dimensions text_regions = ocr_results.get('text_regions', []) ocr_dimensions = ocr_results.get('ocr_dimensions', []) total_pages = ocr_results.get('total_pages', 1) # Group elements by page elements_by_page = {} # Process text regions for text_region in text_regions: page_num = text_region.get('page', 1) if page_num not in elements_by_page: elements_by_page[page_num] = [] element = self._convert_text_region(text_region) if element: elements_by_page[page_num].append(element) # Process images for img_meta in ocr_results.get('images_metadata', []): page_num = img_meta.get('page', 1) if page_num not in elements_by_page: elements_by_page[page_num] = [] element = self._convert_image_metadata(img_meta) if element: elements_by_page[page_num].append(element) # Process tables from layout_data if available if 'layout_data' in ocr_results and isinstance(ocr_results['layout_data'], dict): for table_data in ocr_results['layout_data'].get('tables', []): page_num = table_data.get('page', 1) if page_num not in elements_by_page: elements_by_page[page_num] = [] element = self._convert_table_data(table_data) if element: elements_by_page[page_num].append(element) # Create pages max_page = max(elements_by_page.keys()) if elements_by_page else total_pages for page_num in range(1, max_page + 1): elements = elements_by_page.get(page_num, []) # Get page dimensions # Handle both dict (single page) and list (multiple pages) formats if isinstance(ocr_dimensions, dict): # Single page format: {'width': W, 'height': H} page_width = ocr_dimensions.get('width', 0) page_height = ocr_dimensions.get('height', 0) elif isinstance(ocr_dimensions, list): # Multi-page format: [{'page': 1, 'width': W, 'height': H}, ...] page_dims = next((d for d in ocr_dimensions if isinstance(d, dict) and d.get('page') == page_num), None) if page_dims: page_width = page_dims.get('width', 0) page_height = page_dims.get('height', 0) else: page_width = 0 page_height = 0 else: # Default dimensions if not available page_width = 0 page_height = 0 # Determine reading order based on position reading_order = self._calculate_reading_order(elements) page = Page( page_number=page_num, dimensions=Dimensions( width=page_width, height=page_height ), elements=elements, metadata={'reading_order': reading_order} ) pages.append(page) return pages def _convert_pp3_element( self, elem_data: Dict[str, Any], page_idx: int ) -> Optional[DocumentElement]: """Convert PP-StructureV3 element to DocumentElement.""" try: # Extract bbox bbox_data = elem_data.get('bbox', [0, 0, 0, 0]) bbox = BoundingBox( x0=float(bbox_data[0]), y0=float(bbox_data[1]), x1=float(bbox_data[2]), y1=float(bbox_data[3]) ) # Get element type element_type = elem_data.get('type', ElementType.TEXT) if isinstance(element_type, str): # Convert string to ElementType if needed element_type = ElementType[element_type] if element_type in ElementType.__members__ else ElementType.TEXT # Prepare content based on element type if element_type == ElementType.TABLE: # For tables, use TableData as content table_data = self._extract_table_data(elem_data) content = table_data if table_data else elem_data.get('content', '') elif element_type in [ElementType.IMAGE, ElementType.FIGURE]: # For images, use metadata dict as content content = { 'path': elem_data.get('img_path', ''), 'width': elem_data.get('width', 0), 'height': elem_data.get('height', 0), 'format': elem_data.get('format', 'unknown') } else: content = elem_data.get('content', '') # Create element element = DocumentElement( element_id=elem_data.get('element_id', f"elem_{self.element_counter}"), type=element_type, content=content, bbox=bbox, confidence=elem_data.get('confidence', 1.0), metadata=elem_data.get('metadata', {}) ) # Add style info if available if 'style' in elem_data: element.style = self._extract_style_info(elem_data['style']) self.element_counter += 1 return element except Exception as e: logger.warning(f"Failed to convert PP3 element: {e}") return None def _convert_text_region( self, text_region: Dict[str, Any] ) -> Optional[DocumentElement]: """Convert text region to DocumentElement.""" try: # Extract bbox (handle both formats: [[x1,y1], [x2,y1], [x2,y2], [x1,y2]] or [x0, y0, x1, y1]) bbox_data = text_region.get('bbox', [0, 0, 0, 0]) if isinstance(bbox_data, list) and len(bbox_data) == 4: if isinstance(bbox_data[0], list): # 4-point format: [[x1,y1], [x2,y1], [x2,y2], [x1,y2]] x0 = float(bbox_data[0][0]) y0 = float(bbox_data[0][1]) x1 = float(bbox_data[2][0]) y1 = float(bbox_data[2][1]) else: # Simple format: [x0, y0, x1, y1] x0 = float(bbox_data[0]) y0 = float(bbox_data[1]) x1 = float(bbox_data[2]) y1 = float(bbox_data[3]) else: x0 = y0 = x1 = y1 = 0 bbox = BoundingBox(x0=x0, y0=y0, x1=x1, y1=y1) element = DocumentElement( element_id=f"text_{self.element_counter}", type=ElementType.TEXT, content=text_region.get('text', ''), bbox=bbox, confidence=text_region.get('confidence', 1.0), metadata={'page': text_region.get('page', 1)} ) self.element_counter += 1 return element except Exception as e: logger.warning(f"Failed to convert text region: {e}") return None def _convert_image_metadata( self, img_meta: Dict[str, Any] ) -> Optional[DocumentElement]: """Convert image metadata to DocumentElement.""" try: # Extract bbox (handle both formats) bbox_data = img_meta.get('bbox', [0, 0, 0, 0]) if isinstance(bbox_data, list) and len(bbox_data) == 4: if isinstance(bbox_data[0], list): # 4-point format: [[x1,y1], [x2,y1], [x2,y2], [x1,y2]] x0 = float(bbox_data[0][0]) y0 = float(bbox_data[0][1]) x1 = float(bbox_data[2][0]) y1 = float(bbox_data[2][1]) else: # Simple format: [x0, y0, x1, y1] x0 = float(bbox_data[0]) y0 = float(bbox_data[1]) x1 = float(bbox_data[2]) y1 = float(bbox_data[3]) else: x0 = y0 = x1 = y1 = 0 bbox = BoundingBox(x0=x0, y0=y0, x1=x1, y1=y1) # Create image content dict image_content = { 'path': img_meta.get('path', ''), 'width': img_meta.get('width', 0), 'height': img_meta.get('height', 0), 'format': img_meta.get('format', 'unknown') } element = DocumentElement( element_id=f"img_{self.element_counter}", type=ElementType.IMAGE, content=image_content, bbox=bbox, metadata={'page': img_meta.get('page', 1)} ) self.element_counter += 1 return element except Exception as e: logger.warning(f"Failed to convert image metadata: {e}") return None def _convert_table_data( self, table_dict: Dict[str, Any] ) -> Optional[DocumentElement]: """Convert table data to DocumentElement.""" try: # Extract bbox bbox_data = table_dict.get('bbox', [0, 0, 0, 0]) bbox = BoundingBox( x0=float(bbox_data[0]), y0=float(bbox_data[1]), x1=float(bbox_data[2]), y1=float(bbox_data[3]) ) # Create table data # Note: TableData uses 'cols' not 'columns', and doesn't have 'html' field # HTML content is stored in metadata instead raw_cells = table_dict.get('cells', []) table_cells = [] # Convert raw cells to TableCell objects if needed for cell_data in raw_cells: if isinstance(cell_data, dict): from app.models.unified_document import TableCell table_cells.append(TableCell( row=cell_data.get('row', 0), col=cell_data.get('col', 0), row_span=cell_data.get('row_span', 1), col_span=cell_data.get('col_span', 1), content=cell_data.get('content', '') )) table_data = TableData( rows=table_dict.get('rows', 0), cols=table_dict.get('columns', table_dict.get('cols', 0)), cells=table_cells, caption=table_dict.get('caption') ) element = DocumentElement( element_id=f"table_{self.element_counter}", type=ElementType.TABLE, content=table_data, # Use TableData object as content bbox=bbox, metadata={'page': table_dict.get('page', 1), 'extracted_text': table_dict.get('extracted_text', '')} ) self.element_counter += 1 return element except Exception as e: logger.warning(f"Failed to convert table data: {e}") return None def _extract_table_data(self, elem_data: Dict) -> Optional[TableData]: """Extract table data from element.""" try: html = elem_data.get('html', '') extracted_text = elem_data.get('extracted_text', '') # Fallback: check content field for HTML table if html field is empty if not html: content = elem_data.get('content', '') if isinstance(content, str) and '
| Optional[StyleInfo]: """Extract style info from element.""" try: return StyleInfo( font_family=style_data.get('font_family'), font_size=style_data.get('font_size'), font_weight=style_data.get('font_weight'), font_style=style_data.get('font_style'), text_color=style_data.get('text_color'), background_color=style_data.get('background_color'), alignment=style_data.get('alignment') ) except: return None def _calculate_reading_order(self, elements: List[DocumentElement]) -> List[int]: """Calculate reading order based on element positions.""" if not elements: return [] # Create indexed elements with position indexed_elements = [] for i, elem in enumerate(elements): # Use top-left corner for sorting indexed_elements.append(( i, elem.bbox.y1, # y coordinate (top to bottom) elem.bbox.x1 # x coordinate (left to right) )) # Sort by y first (top to bottom), then x (left to right) indexed_elements.sort(key=lambda x: (x[1], x[2])) # Return the sorted indices return [idx for idx, _, _ in indexed_elements] def _establish_relationships(self, doc: UnifiedDocument): """ Establish relationships between elements. This includes: - Linking captions to figures/tables - Grouping list items - Identifying headers and their content """ for page in doc.pages: # Link captions to nearest figure/table self._link_captions(page.elements) # Group consecutive list items self._group_list_items(page.elements) # Link headers to content self._link_headers(page.elements) # Update metadata based on content self._update_metadata(doc) def _link_captions(self, elements: List[DocumentElement]): """Link caption elements to their associated figures/tables.""" captions = [e for e in elements if e.type in [ElementType.CAPTION, ElementType.TABLE_CAPTION]] targets = [e for e in elements if e.type in [ElementType.FIGURE, ElementType.TABLE, ElementType.IMAGE]] for caption in captions: if not targets: break # Find nearest target above the caption best_target = None min_distance = float('inf') for target in targets: # Caption should be below the target if target.bbox.y2 <= caption.bbox.y1: distance = caption.bbox.y1 - target.bbox.y2 if distance < min_distance: min_distance = distance best_target = target if best_target and min_distance < 50: # Within 50 pixels caption.metadata['linked_to'] = best_target.element_id best_target.metadata['caption_id'] = caption.element_id def _group_list_items(self, elements: List[DocumentElement]): """Group consecutive list items.""" list_items = [e for e in elements if e.type == ElementType.LIST_ITEM] if not list_items: return # Sort by position list_items.sort(key=lambda e: (e.bbox.y1, e.bbox.x1)) # Group consecutive items current_group = [] groups = [] for i, item in enumerate(list_items): if i == 0: current_group = [item] else: prev_item = list_items[i-1] # Check if items are consecutive (similar x position, reasonable y gap) x_aligned = abs(item.bbox.x1 - prev_item.bbox.x1) < 20 y_consecutive = (item.bbox.y1 - prev_item.bbox.y2) < 30 if x_aligned and y_consecutive: current_group.append(item) else: if current_group: groups.append(current_group) current_group = [item] if current_group: groups.append(current_group) # Mark groups in metadata for group_idx, group in enumerate(groups): group_id = f"list_group_{group_idx}" for item_idx, item in enumerate(group): item.metadata['list_group'] = group_id item.metadata['list_index'] = item_idx def _link_headers(self, elements: List[DocumentElement]): """Link headers to their content sections.""" headers = [e for e in elements if e.type in [ElementType.HEADER, ElementType.TITLE]] for i, header in enumerate(headers): # Find content between this header and the next next_header_y = float('inf') if i + 1 < len(headers): next_header_y = headers[i + 1].bbox.y1 # Find all elements between headers content_elements = [ e for e in elements if (e.bbox.y1 > header.bbox.y2 and e.bbox.y1 < next_header_y and e.type not in [ElementType.HEADER, ElementType.TITLE]) ] if content_elements: header.metadata['content_elements'] = [e.element_id for e in content_elements] for elem in content_elements: elem.metadata['header_id'] = header.element_id def _update_metadata(self, doc: UnifiedDocument): """Update document metadata based on extracted content.""" # For now, just ensure basic metadata is present. # Since DocumentMetadata doesn't have all these fields, # we can store summary data at the document level or in processing_errors pass def _generate_document_id(self, file_path: Path) -> str: """Generate unique document ID.""" content = f"{file_path.name}_{datetime.now().isoformat()}" return hashlib.md5(content.encode()).hexdigest() def _detect_mime_type(self, file_path: Path) -> str: """Detect MIME type of file.""" try: import magic return magic.from_file(str(file_path), mime=True) except: # Fallback to extension-based detection ext = file_path.suffix.lower() mime_map = { '.pdf': 'application/pdf', '.png': 'image/png', '.jpg': 'image/jpeg', '.jpeg': 'image/jpeg' } return mime_map.get(ext, 'application/octet-stream') def _count_elements(self, pages: List[Page]) -> int: """Count total elements across all pages.""" return sum(len(page.elements) for page in pages) def _extract_from_direct_results( self, pages_data: List[Dict[str, Any]] ) -> List[Page]: """Extract pages from direct PP-StructureV3 results.""" pages = [] for page_idx, page_data in enumerate(pages_data): elements = [] # Process each element in the page if 'elements' in page_data: for elem_data in page_data['elements']: element = self._convert_pp3_element(elem_data, page_idx) if element: elements.append(element) # Create page page = Page( page_number=page_idx + 1, dimensions=Dimensions( width=page_data.get('width', 0), height=page_data.get('height', 0) ), elements=elements, metadata={'reading_order': self._calculate_reading_order(elements)} ) pages.append(page) return pages |