""" Layout-Preserving PDF Generation Service Generates PDF files that preserve the original document layout using OCR JSON data """ import json import logging from pathlib import Path from typing import Dict, List, Optional, Tuple, Union from datetime import datetime from reportlab.lib.pagesizes import A4, letter from reportlab.lib.units import mm from reportlab.pdfgen import canvas from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.platypus import Table, TableStyle from reportlab.lib import colors from reportlab.lib.enums import TA_CENTER, TA_LEFT, TA_RIGHT from reportlab.platypus import Paragraph from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from PIL import Image from html.parser import HTMLParser from app.core.config import settings # Import UnifiedDocument for dual-track support try: from app.models.unified_document import ( UnifiedDocument, DocumentElement, ElementType, BoundingBox, TableData, ProcessingTrack ) UNIFIED_DOCUMENT_AVAILABLE = True except ImportError: UNIFIED_DOCUMENT_AVAILABLE = False UnifiedDocument = None logger = logging.getLogger(__name__) class HTMLTableParser(HTMLParser): """Parse HTML table to extract structure and data""" def __init__(self): super().__init__() self.tables = [] self.current_table = None self.current_row = None self.current_cell = None self.in_table = False def handle_starttag(self, tag, attrs): attrs_dict = dict(attrs) if tag == 'table': self.in_table = True self.current_table = {'rows': []} elif tag == 'tr' and self.in_table: self.current_row = {'cells': []} elif tag in ('td', 'th') and self.in_table and self.current_row is not None: colspan = int(attrs_dict.get('colspan', 1)) rowspan = int(attrs_dict.get('rowspan', 1)) self.current_cell = { 'text': '', 'is_header': tag == 'th', 'colspan': colspan, 'rowspan': rowspan } def handle_endtag(self, tag): if tag == 'table' and self.in_table: if self.current_table and self.current_table['rows']: self.tables.append(self.current_table) self.current_table = None self.in_table = False elif tag == 'tr' and self.current_row is not None: if self.current_table is not None: self.current_table['rows'].append(self.current_row) self.current_row = None elif tag in ('td', 'th') and self.current_cell is not None: if self.current_row is not None: self.current_row['cells'].append(self.current_cell) self.current_cell = None def handle_data(self, data): if self.current_cell is not None: self.current_cell['text'] += data.strip() + ' ' class PDFGeneratorService: """Service for generating layout-preserving PDFs from OCR JSON data""" # Font mapping from common fonts to PDF standard fonts FONT_MAPPING = { 'Arial': 'Helvetica', 'Arial Black': 'Helvetica-Bold', 'Times New Roman': 'Times-Roman', 'Times': 'Times-Roman', 'Courier New': 'Courier', 'Courier': 'Courier', 'Calibri': 'Helvetica', 'Cambria': 'Times-Roman', 'Georgia': 'Times-Roman', 'Verdana': 'Helvetica', 'Tahoma': 'Helvetica', 'Trebuchet MS': 'Helvetica', 'Comic Sans MS': 'Helvetica', 'Impact': 'Helvetica-Bold', 'Lucida Console': 'Courier', 'Palatino': 'Times-Roman', 'Garamond': 'Times-Roman', 'Bookman': 'Times-Roman', 'Century Gothic': 'Helvetica', 'Franklin Gothic': 'Helvetica', } # Style flags for text formatting STYLE_FLAG_BOLD = 1 STYLE_FLAG_ITALIC = 2 STYLE_FLAG_UNDERLINE = 4 STYLE_FLAG_STRIKETHROUGH = 8 def __init__(self): """Initialize PDF generator with font configuration""" self.font_name = 'NotoSansSC' self.font_path = None self.font_registered = False self.current_processing_track = None # Track type for current document self._register_chinese_font() def _register_chinese_font(self): """Register Chinese font for PDF generation""" try: # Get font path from settings font_path = Path(settings.chinese_font_path) # Try relative path from project root if not font_path.is_absolute(): # Adjust path - settings.chinese_font_path starts with ./backend/ project_root = Path(__file__).resolve().parent.parent.parent.parent font_path = project_root / font_path if not font_path.exists(): logger.error(f"Chinese font not found at {font_path}") return # Register font pdfmetrics.registerFont(TTFont(self.font_name, str(font_path))) self.font_path = font_path self.font_registered = True logger.info(f"Chinese font registered: {self.font_name} from {font_path}") except Exception as e: logger.error(f"Failed to register Chinese font: {e}") self.font_registered = False def _parse_color(self, color_value) -> Tuple[float, float, float]: """ Parse color value to RGB tuple. Args: color_value: Color as hex string (#RRGGBB), RGB tuple, or color name Returns: RGB tuple with values 0-1 for ReportLab """ if not color_value: return (0, 0, 0) # Default to black try: # Handle hex color (#RRGGBB or #RGB) if isinstance(color_value, str) and color_value.startswith('#'): hex_color = color_value.lstrip('#') # Expand short form (#RGB -> #RRGGBB) if len(hex_color) == 3: hex_color = ''.join([c*2 for c in hex_color]) if len(hex_color) == 6: r = int(hex_color[0:2], 16) / 255.0 g = int(hex_color[2:4], 16) / 255.0 b = int(hex_color[4:6], 16) / 255.0 return (r, g, b) # Handle RGB tuple or list elif isinstance(color_value, (tuple, list)) and len(color_value) >= 3: r, g, b = color_value[0:3] # Normalize to 0-1 if values are 0-255 if any(v > 1 for v in [r, g, b]): return (r/255.0, g/255.0, b/255.0) return (r, g, b) except (ValueError, TypeError) as e: logger.warning(f"Failed to parse color {color_value}: {e}") # Default to black return (0, 0, 0) def _map_font(self, font_name: Optional[str]) -> str: """ Map font name to PDF standard font. Args: font_name: Original font name Returns: PDF standard font name """ if not font_name: return 'Helvetica' # Direct lookup if font_name in self.FONT_MAPPING: return self.FONT_MAPPING[font_name] # Case-insensitive lookup font_lower = font_name.lower() for orig_font, pdf_font in self.FONT_MAPPING.items(): if orig_font.lower() == font_lower: return pdf_font # Partial match for common patterns if 'arial' in font_lower: return 'Helvetica' elif 'times' in font_lower: return 'Times-Roman' elif 'courier' in font_lower: return 'Courier' # Default fallback logger.debug(f"Font '{font_name}' not found in mapping, using Helvetica") return 'Helvetica' def _apply_text_style(self, c: canvas.Canvas, style_info, default_size: float = 12): """ Apply text styling from StyleInfo to PDF canvas. Args: c: ReportLab canvas object style_info: StyleInfo object or dict with font, size, color, flags default_size: Default font size if not specified """ if not style_info: # Apply default styling c.setFont('Helvetica', default_size) c.setFillColorRGB(0, 0, 0) return try: # Extract style attributes if hasattr(style_info, '__dict__'): # StyleInfo object font_family = getattr(style_info, 'font', None) font_size = getattr(style_info, 'size', default_size) color = getattr(style_info, 'color', None) flags = getattr(style_info, 'flags', 0) elif isinstance(style_info, dict): # Dictionary font_family = style_info.get('font') font_size = style_info.get('size', default_size) color = style_info.get('color') flags = style_info.get('flags', 0) else: # Unknown format, use defaults c.setFont('Helvetica', default_size) c.setFillColorRGB(0, 0, 0) return # Map font name base_font = self._map_font(font_family) if font_family else 'Helvetica' # Apply bold/italic modifiers if flags: is_bold = bool(flags & self.STYLE_FLAG_BOLD) is_italic = bool(flags & self.STYLE_FLAG_ITALIC) if is_bold and is_italic: # Try bold-italic variant if 'Helvetica' in base_font: base_font = 'Helvetica-BoldOblique' elif 'Times' in base_font: base_font = 'Times-BoldItalic' elif 'Courier' in base_font: base_font = 'Courier-BoldOblique' elif is_bold: # Try bold variant if 'Helvetica' in base_font: base_font = 'Helvetica-Bold' elif 'Times' in base_font: base_font = 'Times-Bold' elif 'Courier' in base_font: base_font = 'Courier-Bold' elif is_italic: # Try italic variant if 'Helvetica' in base_font: base_font = 'Helvetica-Oblique' elif 'Times' in base_font: base_font = 'Times-Italic' elif 'Courier' in base_font: base_font = 'Courier-Oblique' # Apply font and size actual_size = font_size if font_size and font_size > 0 else default_size try: c.setFont(base_font, actual_size) except KeyError: # Font not available, fallback logger.warning(f"Font '{base_font}' not available, using Helvetica") c.setFont('Helvetica', actual_size) # Apply color if color: r, g, b = self._parse_color(color) c.setFillColorRGB(r, g, b) else: c.setFillColorRGB(0, 0, 0) # Default black except Exception as e: logger.error(f"Failed to apply text style: {e}") # Fallback to defaults c.setFont('Helvetica', default_size) c.setFillColorRGB(0, 0, 0) def load_ocr_json(self, json_path: Path) -> Optional[Dict]: """ Load and parse OCR JSON result file Args: json_path: Path to JSON file Returns: Parsed JSON data or None if failed """ try: with open(json_path, 'r', encoding='utf-8') as f: data = json.load(f) logger.info(f"Loaded OCR JSON: {json_path.name}") return data except Exception as e: logger.error(f"Failed to load JSON {json_path}: {e}") return None def _get_image_path(self, element) -> Optional[str]: """ Get image path with fallback logic. Checks multiple locations in order: 1. element.content["saved_path"] - Direct track saved path 2. element.content["path"] - Legacy path 3. element.content["image_path"] - Alternative path 4. element.saved_path - Direct attribute 5. element.metadata["path"] - Metadata fallback Args: element: DocumentElement object Returns: Path to image file or None if not found """ # Check content dictionary if isinstance(element.content, dict): for key in ['saved_path', 'path', 'image_path']: if key in element.content: return element.content[key] # Check direct attribute if hasattr(element, 'saved_path') and element.saved_path: return element.saved_path # Check metadata if element.metadata and isinstance(element.metadata, dict): if 'path' in element.metadata: return element.metadata['path'] if 'saved_path' in element.metadata: return element.metadata['saved_path'] return None def convert_unified_document_to_ocr_data(self, unified_doc: 'UnifiedDocument') -> Dict: """ Convert UnifiedDocument to OCR data format for PDF generation. This method transforms the UnifiedDocument structure into the legacy OCR data format that the PDF generator expects, supporting both OCR and DIRECT processing tracks. Args: unified_doc: UnifiedDocument object from either processing track Returns: Dictionary in OCR data format with text_regions, images_metadata, layout_data """ text_regions = [] images_metadata = [] layout_elements = [] for page in unified_doc.pages: page_num = page.page_number # 1-based for element in page.elements: # Convert BoundingBox to polygon format [[x,y], [x,y], [x,y], [x,y]] bbox_polygon = [ [element.bbox.x0, element.bbox.y0], # top-left [element.bbox.x1, element.bbox.y0], # top-right [element.bbox.x1, element.bbox.y1], # bottom-right [element.bbox.x0, element.bbox.y1], # bottom-left ] # Handle text elements if element.is_text or element.type in [ ElementType.TEXT, ElementType.TITLE, ElementType.HEADER, ElementType.FOOTER, ElementType.PARAGRAPH, ElementType.CAPTION, ElementType.LIST_ITEM, ElementType.FOOTNOTE, ElementType.REFERENCE ]: text_content = element.get_text() if text_content: text_region = { 'text': text_content, 'bbox': bbox_polygon, 'confidence': element.confidence or 1.0, 'page': page_num } # Include style information if available (for Direct track) if hasattr(element, 'style') and element.style: text_region['style'] = element.style text_regions.append(text_region) # Handle table elements elif element.type == ElementType.TABLE: # Convert TableData to HTML for layout_data if isinstance(element.content, TableData): html_content = element.content.to_html() elif isinstance(element.content, dict): html_content = element.content.get('html', str(element.content)) else: html_content = str(element.content) layout_elements.append({ 'type': 'table', 'content': html_content, 'bbox': [element.bbox.x0, element.bbox.y0, element.bbox.x1, element.bbox.y1], 'page': page_num - 1 # layout uses 0-based }) # Add bbox to images_metadata for text overlap filtering # (no actual image file, just bbox for filtering) images_metadata.append({ 'image_path': None, # No fake table image 'bbox': bbox_polygon, 'page': page_num - 1, # 0-based for images_metadata 'type': 'table', 'element_id': element.element_id }) # Handle image/visual elements elif element.is_visual or element.type in [ ElementType.IMAGE, ElementType.FIGURE, ElementType.CHART, ElementType.DIAGRAM, ElementType.LOGO ]: # Get image path using fallback logic image_path = self._get_image_path(element) # Only add if we found a valid path if image_path: images_metadata.append({ 'image_path': image_path, 'bbox': bbox_polygon, 'page': page_num - 1, # 0-based 'type': element.type.value }) logger.debug(f"Found image path: {image_path} for element {element.element_id}") else: logger.warning(f"No image path found for visual element {element.element_id}") # Build OCR data structure ocr_data = { 'text_regions': text_regions, 'images_metadata': images_metadata, 'layout_data': { 'elements': layout_elements, 'total_elements': len(layout_elements) }, 'total_pages': unified_doc.page_count, 'ocr_dimensions': { 'width': unified_doc.pages[0].dimensions.width if unified_doc.pages else 0, 'height': unified_doc.pages[0].dimensions.height if unified_doc.pages else 0 }, # Metadata for tracking '_from_unified_document': True, '_processing_track': unified_doc.metadata.processing_track.value } logger.info(f"Converted UnifiedDocument to OCR data: " f"{len(text_regions)} text regions, " f"{len(images_metadata)} images, " f"{len(layout_elements)} layout elements, " f"track={unified_doc.metadata.processing_track.value}") return ocr_data def generate_from_unified_document( self, unified_doc: 'UnifiedDocument', output_path: Path, source_file_path: Optional[Path] = None ) -> bool: """ Generate layout-preserving PDF directly from UnifiedDocument. This method supports both OCR and DIRECT processing tracks, preserving layout and coordinate information from either source. Args: unified_doc: UnifiedDocument object output_path: Path to save generated PDF source_file_path: Optional path to original source file Returns: True if successful, False otherwise """ if not UNIFIED_DOCUMENT_AVAILABLE: logger.error("UnifiedDocument support not available") return False try: # Detect processing track for track-specific rendering processing_track = None if hasattr(unified_doc, 'metadata') and unified_doc.metadata: if hasattr(unified_doc.metadata, 'processing_track'): processing_track = unified_doc.metadata.processing_track elif isinstance(unified_doc.metadata, dict): processing_track = unified_doc.metadata.get('processing_track') # Route to track-specific rendering method is_direct_track = (processing_track == 'direct' or processing_track == ProcessingTrack.DIRECT) logger.info(f"Processing track: {processing_track}, using {'Direct' if is_direct_track else 'OCR'} track rendering") if is_direct_track: # Direct track: Rich formatting preservation return self._generate_direct_track_pdf( unified_doc=unified_doc, output_path=output_path, source_file_path=source_file_path ) else: # OCR track: Simplified rendering (backward compatible) return self._generate_ocr_track_pdf( unified_doc=unified_doc, output_path=output_path, source_file_path=source_file_path ) except Exception as e: logger.error(f"Failed to generate PDF from UnifiedDocument: {e}") import traceback traceback.print_exc() return False def _generate_direct_track_pdf( self, unified_doc: 'UnifiedDocument', output_path: Path, source_file_path: Optional[Path] = None ) -> bool: """ Generate PDF with rich formatting preservation for Direct track. This method processes UnifiedDocument directly without converting to legacy OCR format, preserving StyleInfo and applying proper text formatting including line breaks. Args: unified_doc: UnifiedDocument from Direct extraction output_path: Path to save generated PDF source_file_path: Optional path to original source file Returns: True if successful, False otherwise """ try: logger.info("=== Direct Track PDF Generation ===") logger.info(f"Total pages: {len(unified_doc.pages)}") # Set current track for helper methods self.current_processing_track = 'direct' # Get page dimensions from first page if not unified_doc.pages: logger.error("No pages in document") return False first_page = unified_doc.pages[0] page_width = first_page.width page_height = first_page.height logger.info(f"Page dimensions: {page_width} x {page_height}") # Create PDF canvas with source dimensions from reportlab.pdfgen import canvas pdf_canvas = canvas.Canvas(str(output_path), pagesize=(page_width, page_height)) # Process each page for page_idx, page in enumerate(unified_doc.pages): logger.info(f">>> Processing page {page_idx + 1}/{len(unified_doc.pages)}") if page_idx > 0: pdf_canvas.showPage() # Separate elements by type text_elements = [] table_elements = [] image_elements = [] for element in page.elements: if element.type == ElementType.TABLE: table_elements.append(element) elif element.is_visual or element.type in [ ElementType.IMAGE, ElementType.FIGURE, ElementType.CHART, ElementType.DIAGRAM ]: image_elements.append(element) elif element.is_text or element.type in [ ElementType.TEXT, ElementType.TITLE, ElementType.HEADER, ElementType.FOOTER, ElementType.PARAGRAPH ]: text_elements.append(element) logger.info(f"Page {page_idx + 1}: {len(text_elements)} text, " f"{len(table_elements)} tables, {len(image_elements)} images") # Draw in layers: images → tables → text # 1. Draw images for img_elem in image_elements: self._draw_image_element_direct(pdf_canvas, img_elem, page_height, output_path.parent) # 2. Draw tables for table_elem in table_elements: self._draw_table_element_direct(pdf_canvas, table_elem, page_height) # 3. Draw text with line breaks and styling for text_elem in text_elements: self._draw_text_element_direct(pdf_canvas, text_elem, page_height) # Save PDF pdf_canvas.save() logger.info(f"Direct track PDF saved to {output_path}") # Reset track self.current_processing_track = None return True except Exception as e: logger.error(f"Failed to generate Direct track PDF: {e}") import traceback traceback.print_exc() self.current_processing_track = None return False def _generate_ocr_track_pdf( self, unified_doc: 'UnifiedDocument', output_path: Path, source_file_path: Optional[Path] = None ) -> bool: """ Generate PDF with simplified rendering for OCR track. This method uses the existing OCR data conversion and rendering pipeline for backward compatibility. Args: unified_doc: UnifiedDocument from OCR processing output_path: Path to save generated PDF source_file_path: Optional path to original source file Returns: True if successful, False otherwise """ try: logger.info("=== OCR Track PDF Generation ===") # Set current track self.current_processing_track = 'ocr' # Convert UnifiedDocument to OCR data format (legacy) ocr_data = self.convert_unified_document_to_ocr_data(unified_doc) # Use existing generation pipeline result = self._generate_pdf_from_data( ocr_data=ocr_data, output_path=output_path, source_file_path=source_file_path ) # Reset track self.current_processing_track = None return result except Exception as e: logger.error(f"Failed to generate OCR track PDF: {e}") import traceback traceback.print_exc() self.current_processing_track = None return False def _generate_pdf_from_data( self, ocr_data: Dict, output_path: Path, source_file_path: Optional[Path] = None, json_parent_dir: Optional[Path] = None ) -> bool: """ Internal method to generate PDF from OCR data dictionary. This is the core generation logic extracted for reuse by both JSON-based and UnifiedDocument-based generation paths. Args: ocr_data: OCR data dictionary output_path: Path to save generated PDF source_file_path: Optional path to original source file json_parent_dir: Directory containing images (for JSON-based generation) Returns: True if successful, False otherwise """ try: # Check if PDF already exists (caching) if output_path.exists(): logger.info(f"PDF already exists: {output_path.name}") return True # Get text regions text_regions = ocr_data.get('text_regions', []) if not text_regions: logger.warning("No text regions found in data") # Don't fail - might have only tables/images # Get images metadata images_metadata = ocr_data.get('images_metadata', []) # Get layout data layout_data = ocr_data.get('layout_data', {}) # Step 1: Get OCR processing dimensions ocr_width, ocr_height = self.calculate_page_dimensions(ocr_data, source_file_path=None) logger.info(f"OCR 處理時使用的座標系尺寸: {ocr_width:.1f} x {ocr_height:.1f}") # Step 2: Get target PDF dimensions if source_file_path: target_dims = self.get_original_page_size(source_file_path) if target_dims: target_width, target_height = target_dims logger.info(f"目標 PDF 尺寸(來自原始文件): {target_width:.1f} x {target_height:.1f}") else: target_width, target_height = ocr_width, ocr_height logger.warning(f"無法獲取原始文件尺寸,使用 OCR 尺寸作為目標") else: target_width, target_height = ocr_width, ocr_height logger.info(f"無原始文件,使用 OCR 尺寸作為目標: {target_width:.1f} x {target_height:.1f}") # Step 3: Calculate scale factors scale_w = target_width / ocr_width if ocr_width > 0 else 1.0 scale_h = target_height / ocr_height if ocr_height > 0 else 1.0 logger.info(f"縮放因子: X={scale_w:.3f}, Y={scale_h:.3f}") # Create PDF canvas pdf_canvas = canvas.Canvas(str(output_path), pagesize=(target_width, target_height)) # Filter text regions to avoid overlap with tables/images regions_to_avoid = images_metadata table_count = len([img for img in images_metadata if img.get('type') == 'table']) logger.info(f"過濾文字區域: {len(regions_to_avoid)} 個區域需要避免 (含 {table_count} 個表格)") filtered_text_regions = self._filter_text_in_regions(text_regions, regions_to_avoid) # Group regions by page pages_data = {} for region in filtered_text_regions: page_num = region.get('page', 1) if page_num not in pages_data: pages_data[page_num] = [] pages_data[page_num].append(region) # Get table elements from layout_data table_elements = [] if layout_data and layout_data.get('elements'): table_elements = [e for e in layout_data['elements'] if e.get('type') == 'table'] # Process each page total_pages = ocr_data.get('total_pages', 1) logger.info(f"開始處理 {total_pages} 頁 PDF") # Determine image directory if json_parent_dir is None: json_parent_dir = output_path.parent for page_num in range(1, total_pages + 1): logger.info(f">>> 處理第 {page_num}/{total_pages} 頁") if page_num > 1: pdf_canvas.showPage() # Get regions for this page page_text_regions = pages_data.get(page_num, []) page_table_regions = [t for t in table_elements if t.get('page') == page_num - 1] page_image_regions = [ img for img in images_metadata if img.get('page') == page_num - 1 and img.get('type') != 'table' and img.get('image_path') is not None # Skip table placeholders ] # Draw in layers: images → tables → text # 1. Draw images (bottom layer) for img_meta in page_image_regions: self.draw_image_region( pdf_canvas, img_meta, target_height, json_parent_dir, scale_w, scale_h ) # 2. Draw tables (middle layer) for table_elem in page_table_regions: self.draw_table_region( pdf_canvas, table_elem, images_metadata, target_height, scale_w, scale_h ) # 3. Draw text (top layer) for region in page_text_regions: self.draw_text_region( pdf_canvas, region, target_height, scale_w, scale_h ) logger.info(f"<<< 第 {page_num} 頁完成") # Save PDF pdf_canvas.save() file_size = output_path.stat().st_size logger.info(f"Generated PDF: {output_path.name} ({file_size} bytes)") return True except Exception as e: logger.error(f"Failed to generate PDF: {e}") import traceback traceback.print_exc() return False def calculate_page_dimensions(self, ocr_data: Dict, source_file_path: Optional[Path] = None) -> Tuple[float, float]: """ 從 OCR JSON 數據中推斷 OCR 處理時的實際頁面尺寸。 這非常重要,因為 OCR 可能在高解析度影像上運行。 Args: ocr_data: Complete OCR data dictionary with text_regions and layout source_file_path: Optional path to source file (fallback only) Returns: Tuple of (width, height) in points """ max_x = 0 max_y = 0 # *** 關鍵修復:檢查所有可能包含 bbox 的字段 *** # 不同版本的 OCR 輸出可能使用不同的字段名 all_regions = [] # 1. text_regions - 包含所有文字區域(最常見) if 'text_regions' in ocr_data and isinstance(ocr_data['text_regions'], list): all_regions.extend(ocr_data['text_regions']) # 2. image_regions - 包含圖片區域 if 'image_regions' in ocr_data and isinstance(ocr_data['image_regions'], list): all_regions.extend(ocr_data['image_regions']) # 3. tables - 包含表格區域 if 'tables' in ocr_data and isinstance(ocr_data['tables'], list): all_regions.extend(ocr_data['tables']) # 4. layout - 可能包含布局信息(可能是空列表) if 'layout' in ocr_data and isinstance(ocr_data['layout'], list): all_regions.extend(ocr_data['layout']) # 5. layout_data.elements - PP-StructureV3 格式 if 'layout_data' in ocr_data and isinstance(ocr_data['layout_data'], dict): elements = ocr_data['layout_data'].get('elements', []) if elements: all_regions.extend(elements) if not all_regions: # 如果 JSON 為空,回退到原始檔案尺寸 logger.warning("JSON 中沒有找到 text_regions, image_regions, tables, layout 或 layout_data.elements,回退到原始檔案尺寸。") if source_file_path: dims = self.get_original_page_size(source_file_path) if dims: return dims return A4 region_count = 0 for region in all_regions: try: bbox = region.get('bbox') if not bbox: continue region_count += 1 # *** 關鍵修復:正確處理多邊形 [[x, y], ...] 格式 *** if isinstance(bbox[0], (int, float)): # 處理簡單的 [x1, y1, x2, y2] 格式 max_x = max(max_x, bbox[2]) max_y = max(max_y, bbox[3]) elif isinstance(bbox[0], (list, tuple)): # 處理多邊形 [[x, y], ...] 格式 x_coords = [p[0] for p in bbox if isinstance(p, (list, tuple)) and len(p) >= 2] y_coords = [p[1] for p in bbox if isinstance(p, (list, tuple)) and len(p) >= 2] if x_coords and y_coords: max_x = max(max_x, max(x_coords)) max_y = max(max_y, max(y_coords)) except Exception as e: logger.warning(f"Error processing bbox {bbox}: {e}") if max_x > 0 and max_y > 0: logger.info(f"從 {region_count} 個區域中推斷出的 OCR 座標系尺寸: {max_x:.1f} x {max_y:.1f}") return (max_x, max_y) else: # 如果所有 bbox 都解析失敗,才回退 logger.warning("無法從 bbox 推斷尺寸,回退到原始檔案尺寸。") if source_file_path: dims = self.get_original_page_size(source_file_path) if dims: return dims return A4 def get_original_page_size(self, file_path: Path) -> Optional[Tuple[float, float]]: """ Extract page dimensions from original source file Args: file_path: Path to original file (image or PDF) Returns: Tuple of (width, height) in points or None """ try: if not file_path.exists(): return None # For images, get dimensions from PIL if file_path.suffix.lower() in ['.png', '.jpg', '.jpeg', '.bmp', '.tiff']: img = Image.open(file_path) # Use pixel dimensions directly as points (1:1 mapping) # This matches how PaddleOCR reports coordinates width_pt = float(img.width) height_pt = float(img.height) logger.info(f"Extracted dimensions from image: {width_pt:.1f} x {height_pt:.1f} points (1:1 pixel mapping)") return (width_pt, height_pt) # For PDFs, extract dimensions using PyPDF2 if file_path.suffix.lower() == '.pdf': try: from PyPDF2 import PdfReader reader = PdfReader(file_path) if len(reader.pages) > 0: page = reader.pages[0] # MediaBox gives [x1, y1, x2, y2] in points mediabox = page.mediabox width_pt = float(mediabox.width) height_pt = float(mediabox.height) logger.info(f"Extracted dimensions from PDF: {width_pt:.1f} x {height_pt:.1f} points") return (width_pt, height_pt) except ImportError: logger.warning("PyPDF2 not available, cannot extract PDF dimensions") except Exception as e: logger.warning(f"Failed to extract PDF dimensions: {e}") except Exception as e: logger.warning(f"Failed to get page size from {file_path}: {e}") return None def _get_bbox_coords(self, bbox: Union[List[List[float]], List[float]]) -> Optional[Tuple[float, float, float, float]]: """將任何 bbox 格式 (多邊形或 [x1,y1,x2,y2]) 轉換為 [x_min, y_min, x_max, y_max]""" try: if isinstance(bbox[0], (list, tuple)): # 處理多邊形 [[x, y], ...] x_coords = [p[0] for p in bbox if isinstance(p, (list, tuple)) and len(p) >= 2] y_coords = [p[1] for p in bbox if isinstance(p, (list, tuple)) and len(p) >= 2] if not x_coords or not y_coords: return None return min(x_coords), min(y_coords), max(x_coords), max(y_coords) elif isinstance(bbox[0], (int, float)) and len(bbox) == 4: # 處理 [x1, y1, x2, y2] return bbox[0], bbox[1], bbox[2], bbox[3] else: logger.warning(f"未知的 bbox 格式: {bbox}") return None except Exception as e: logger.error(f"解析 bbox {bbox} 時出錯: {e}") return None def _is_bbox_inside(self, inner_bbox_data: Dict, outer_bbox_data: Dict, tolerance: float = 5.0) -> bool: """ 檢查 'inner_bbox' 是否在 'outer_bbox' 內部(帶有容錯)。 此版本可處理多邊形和矩形。 """ inner_coords = self._get_bbox_coords(inner_bbox_data.get('bbox')) outer_coords = self._get_bbox_coords(outer_bbox_data.get('bbox')) if not inner_coords or not outer_coords: return False inner_x1, inner_y1, inner_x2, inner_y2 = inner_coords outer_x1, outer_y1, outer_x2, outer_y2 = outer_coords # 檢查 inner 是否在 outer 內部 (加入 tolerance) is_inside = ( (inner_x1 >= outer_x1 - tolerance) and (inner_y1 >= outer_y1 - tolerance) and (inner_x2 <= outer_x2 + tolerance) and (inner_y2 <= outer_y2 + tolerance) ) return is_inside def _bbox_overlaps(self, bbox1_data: Dict, bbox2_data: Dict, tolerance: float = 5.0) -> bool: """ 檢查兩個 bbox 是否有重疊(帶有容錯)。 如果有任何重疊,返回 True。 Args: bbox1_data: 第一個 bbox 數據 bbox2_data: 第二個 bbox 數據 tolerance: 容錯值(像素) Returns: True 如果兩個 bbox 有重疊 """ coords1 = self._get_bbox_coords(bbox1_data.get('bbox')) coords2 = self._get_bbox_coords(bbox2_data.get('bbox')) if not coords1 or not coords2: return False x1_min, y1_min, x1_max, y1_max = coords1 x2_min, y2_min, x2_max, y2_max = coords2 # 擴展 bbox2(表格/圖片區域)的範圍 x2_min -= tolerance y2_min -= tolerance x2_max += tolerance y2_max += tolerance # 檢查是否有重疊:如果沒有重疊,則必定滿足以下條件之一 no_overlap = ( x1_max < x2_min or # bbox1 在 bbox2 左側 x1_min > x2_max or # bbox1 在 bbox2 右側 y1_max < y2_min or # bbox1 在 bbox2 上方 y1_min > y2_max # bbox1 在 bbox2 下方 ) return not no_overlap def _filter_text_in_regions(self, text_regions: List[Dict], regions_to_avoid: List[Dict], tolerance: float = 10.0) -> List[Dict]: """ 過濾掉與 'regions_to_avoid'(例如表格、圖片)重疊的文字區域。 Args: text_regions: 文字區域列表 regions_to_avoid: 需要避免的區域列表(表格、圖片) tolerance: 容錯值(像素),增加到 10.0 以更好地處理邊界情況 Returns: 過濾後的文字區域列表 """ filtered_text = [] filtered_count = 0 for text_region in text_regions: should_filter = False for avoid_region in regions_to_avoid: # 使用重疊檢測:只要有任何重疊就過濾掉 if self._bbox_overlaps(text_region, avoid_region, tolerance=tolerance): should_filter = True filtered_count += 1 logger.debug(f"過濾掉重疊文字: {text_region.get('text', '')[:20]}...") break # 找到一個重疊區域就足夠了 if not should_filter: filtered_text.append(text_region) logger.info(f"原始文字區域: {len(text_regions)}, 過濾後: {len(filtered_text)}, 移除: {filtered_count}") return filtered_text def draw_text_region( self, pdf_canvas: canvas.Canvas, region: Dict, page_height: float, scale_w: float = 1.0, scale_h: float = 1.0 ): """ Draw a text region at precise coordinates Args: pdf_canvas: ReportLab canvas object region: Text region dict with text, bbox, confidence page_height: Height of page (for coordinate transformation) scale_w: Scale factor for X coordinates (PDF width / OCR width) scale_h: Scale factor for Y coordinates (PDF height / OCR height) """ text = region.get('text', '') bbox = region.get('bbox', []) confidence = region.get('confidence', 1.0) if not text or not bbox or len(bbox) < 4: return try: # bbox from OCR: [[x1,y1], [x2,y2], [x3,y3], [x4,y4]] # Points: top-left, top-right, bottom-right, bottom-left # OCR coordinates: origin (0,0) at top-left, Y increases downward ocr_x_left = bbox[0][0] # Left X ocr_y_top = bbox[0][1] # Top Y in OCR coordinates ocr_x_right = bbox[2][0] # Right X ocr_y_bottom = bbox[2][1] # Bottom Y in OCR coordinates logger.info(f"[文字] '{text[:20]}...' OCR原始座標: L={ocr_x_left:.0f}, T={ocr_y_top:.0f}, R={ocr_x_right:.0f}, B={ocr_y_bottom:.0f}") # Apply scale factors to convert from OCR space to PDF space scaled_x_left = ocr_x_left * scale_w scaled_y_top = ocr_y_top * scale_h scaled_x_right = ocr_x_right * scale_w scaled_y_bottom = ocr_y_bottom * scale_h logger.info(f"[文字] '{text[:20]}...' 縮放後(scale={scale_w:.3f},{scale_h:.3f}): L={scaled_x_left:.1f}, T={scaled_y_top:.1f}, R={scaled_x_right:.1f}, B={scaled_y_bottom:.1f}") # Calculate bbox dimensions (after scaling) bbox_width = abs(scaled_x_right - scaled_x_left) bbox_height = abs(scaled_y_bottom - scaled_y_top) # Calculate font size using heuristics # Font size is typically 70-90% of bbox height # Testing shows 0.75 works well for most cases font_size = bbox_height * 0.75 font_size = max(min(font_size, 72), 4) # Clamp between 4pt and 72pt # Transform coordinates: OCR (top-left origin) → PDF (bottom-left origin) # CRITICAL: Y-axis flip! pdf_x = scaled_x_left pdf_y = page_height - scaled_y_bottom # Flip Y-axis using bottom coordinate logger.info(f"[文字] '{text[:30]}' → PDF位置: ({pdf_x:.1f}, {pdf_y:.1f}), 字體:{font_size:.1f}pt, 寬x高:{bbox_width:.0f}x{bbox_height:.0f}") # Set font with track-specific styling style_info = region.get('style') is_direct_track = (self.current_processing_track == 'direct' or self.current_processing_track == ProcessingTrack.DIRECT) if style_info and is_direct_track: # Direct track: Apply rich styling from StyleInfo self._apply_text_style(pdf_canvas, style_info, default_size=font_size) # Get current font for width calculation font_name = pdf_canvas._fontname font_size = pdf_canvas._fontsize logger.debug(f"Applied Direct track style: font={font_name}, size={font_size}") else: # OCR track or no style: Use simple font selection font_name = self.font_name if self.font_registered else 'Helvetica' pdf_canvas.setFont(font_name, font_size) # Handle line breaks (split text by newlines) lines = text.split('\n') line_height = font_size * 1.2 # 120% of font size for line spacing # Draw each line for i, line in enumerate(lines): if not line.strip(): continue # Skip empty lines line_y = pdf_y - (i * line_height) # Calculate text width to prevent overflow text_width = pdf_canvas.stringWidth(line, font_name, font_size) # If text is too wide for bbox, scale down font for this line current_font_size = font_size if text_width > bbox_width: scale_factor = bbox_width / text_width current_font_size = font_size * scale_factor * 0.95 # 95% to add small margin current_font_size = max(current_font_size, 3) # Minimum 3pt pdf_canvas.setFont(font_name, current_font_size) # Draw text at calculated position pdf_canvas.drawString(pdf_x, line_y, line) # Reset font size for next line if text_width > bbox_width: pdf_canvas.setFont(font_name, font_size) # Debug: Draw bounding box (optional) if settings.pdf_enable_bbox_debug: pdf_canvas.setStrokeColorRGB(1, 0, 0, 0.3) # Red, semi-transparent pdf_canvas.setLineWidth(0.5) # Transform all bbox points to PDF coordinates (apply scaling first) pdf_points = [(p[0] * scale_w, page_height - p[1] * scale_h) for p in bbox] # Draw bbox rectangle for i in range(4): x1, y1 = pdf_points[i] x2, y2 = pdf_points[(i + 1) % 4] pdf_canvas.line(x1, y1, x2, y2) except Exception as e: logger.warning(f"Failed to draw text region '{text[:20]}...': {e}") def draw_table_region( self, pdf_canvas: canvas.Canvas, table_element: Dict, images_metadata: List[Dict], page_height: float, scale_w: float = 1.0, scale_h: float = 1.0 ): """ Draw a table region by parsing HTML and rebuilding with ReportLab Table Args: pdf_canvas: ReportLab canvas object table_element: Table element dict with HTML content images_metadata: List of image metadata to find table bbox page_height: Height of page scale_w: Scale factor for X coordinates (PDF width / OCR width) scale_h: Scale factor for Y coordinates (PDF height / OCR height) """ try: html_content = table_element.get('content', '') if not html_content: return # Parse HTML to extract table structure parser = HTMLTableParser() parser.feed(html_content) if not parser.tables: logger.warning("No tables found in HTML content") return # Get the first table (PP-StructureV3 usually provides one table per element) table_data = parser.tables[0] rows = table_data['rows'] if not rows: return # Get bbox directly from table element table_bbox = table_element.get('bbox') # If no bbox directly, check for bbox_polygon if not table_bbox: bbox_polygon = table_element.get('bbox_polygon') if bbox_polygon and len(bbox_polygon) >= 4: # Convert polygon format to simple bbox [x0, y0, x1, y1] table_bbox = [ bbox_polygon[0][0], # x0 bbox_polygon[0][1], # y0 bbox_polygon[2][0], # x1 bbox_polygon[2][1] # y1 ] if not table_bbox: logger.warning(f"No bbox found for table element") return # Handle different bbox formats if isinstance(table_bbox, list) and len(table_bbox) == 4: # Simple bbox format [x0, y0, x1, y1] if isinstance(table_bbox[0], (int, float)): ocr_x_left_raw = table_bbox[0] ocr_y_top_raw = table_bbox[1] ocr_x_right_raw = table_bbox[2] ocr_y_bottom_raw = table_bbox[3] # Polygon format [[x,y], [x,y], [x,y], [x,y]] elif isinstance(table_bbox[0], list): ocr_x_left_raw = table_bbox[0][0] ocr_y_top_raw = table_bbox[0][1] ocr_x_right_raw = table_bbox[2][0] ocr_y_bottom_raw = table_bbox[2][1] else: logger.error(f"Unexpected bbox format: {table_bbox}") return else: logger.error(f"Invalid table_bbox format: {table_bbox}") return logger.info(f"[表格] OCR原始座標: L={ocr_x_left_raw:.0f}, T={ocr_y_top_raw:.0f}, R={ocr_x_right_raw:.0f}, B={ocr_y_bottom_raw:.0f}") # Apply scaling ocr_x_left = ocr_x_left_raw * scale_w ocr_y_top = ocr_y_top_raw * scale_h ocr_x_right = ocr_x_right_raw * scale_w ocr_y_bottom = ocr_y_bottom_raw * scale_h table_width = abs(ocr_x_right - ocr_x_left) table_height = abs(ocr_y_bottom - ocr_y_top) # Transform coordinates pdf_x = ocr_x_left pdf_y = page_height - ocr_y_bottom # Build table data for ReportLab # Convert parsed structure to simple 2D array max_cols = max(len(row['cells']) for row in rows) logger.info(f"[表格] {len(rows)}行x{max_cols}列 → PDF位置: ({pdf_x:.1f}, {pdf_y:.1f}), 寬x高: {table_width:.0f}x{table_height:.0f}") reportlab_data = [] for row in rows: row_data = [] for cell in row['cells']: text = cell['text'].strip() row_data.append(text) # Pad row if needed while len(row_data) < max_cols: row_data.append('') reportlab_data.append(row_data) # Calculate column widths (equal distribution) col_widths = [table_width / max_cols] * max_cols # Create ReportLab Table # Use smaller font size to fit in bbox font_size = min(table_height / len(rows) * 0.5, 10) font_size = max(font_size, 6) # Create table with font table = Table(reportlab_data, colWidths=col_widths) # Apply table style style = TableStyle([ ('FONT', (0, 0), (-1, -1), self.font_name if self.font_registered else 'Helvetica', font_size), ('GRID', (0, 0), (-1, -1), 0.5, colors.black), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ('ALIGN', (0, 0), (-1, -1), 'CENTER'), ('LEFTPADDING', (0, 0), (-1, -1), 2), ('RIGHTPADDING', (0, 0), (-1, -1), 2), ('TOPPADDING', (0, 0), (-1, -1), 2), ('BOTTOMPADDING', (0, 0), (-1, -1), 2), ]) # Add header style if first row has headers if rows and rows[0]['cells'] and rows[0]['cells'][0].get('is_header'): style.add('BACKGROUND', (0, 0), (-1, 0), colors.lightgrey) style.add('FONT', (0, 0), (-1, 0), self.font_name if self.font_registered else 'Helvetica-Bold', font_size) table.setStyle(style) # Calculate table size table.wrapOn(pdf_canvas, table_width, table_height) # Draw table at position table.drawOn(pdf_canvas, pdf_x, pdf_y) logger.info(f"Drew table at ({pdf_x:.0f}, {pdf_y:.0f}) size {table_width:.0f}x{table_height:.0f} with {len(rows)} rows") except Exception as e: logger.warning(f"Failed to draw table region: {e}") import traceback traceback.print_exc() def draw_image_region( self, pdf_canvas: canvas.Canvas, region: Dict, page_height: float, result_dir: Path, scale_w: float = 1.0, scale_h: float = 1.0 ): """ Draw an image region by embedding the extracted image Handles images extracted by PP-StructureV3 (tables, figures, charts, etc.) Args: pdf_canvas: ReportLab canvas object region: Image metadata dict with image_path and bbox page_height: Height of page (for coordinate transformation) result_dir: Directory containing result files scale_w: Scale factor for X coordinates (PDF width / OCR width) scale_h: Scale factor for Y coordinates (PDF height / OCR height) """ try: image_path_str = region.get('image_path', '') if not image_path_str: return # Construct full path to image image_path = result_dir / image_path_str if not image_path.exists(): logger.warning(f"Image not found: {image_path}") return # Get bbox for positioning bbox = region.get('bbox', []) if not bbox or len(bbox) < 4: # If no bbox, skip for now logger.warning(f"No bbox for image {image_path_str}") return # bbox from OCR: [[x1,y1], [x2,y2], [x3,y3], [x4,y4]] # OCR coordinates: origin (0,0) at top-left, Y increases downward ocr_x_left_raw = bbox[0][0] ocr_y_top_raw = bbox[0][1] ocr_x_right_raw = bbox[2][0] ocr_y_bottom_raw = bbox[2][1] logger.info(f"[圖片] '{image_path_str}' OCR原始座標: L={ocr_x_left_raw:.0f}, T={ocr_y_top_raw:.0f}, R={ocr_x_right_raw:.0f}, B={ocr_y_bottom_raw:.0f}") # Apply scaling ocr_x_left = ocr_x_left_raw * scale_w ocr_y_top = ocr_y_top_raw * scale_h ocr_x_right = ocr_x_right_raw * scale_w ocr_y_bottom = ocr_y_bottom_raw * scale_h # Calculate bbox dimensions (after scaling) bbox_width = abs(ocr_x_right - ocr_x_left) bbox_height = abs(ocr_y_bottom - ocr_y_top) # Transform coordinates: OCR (top-left origin) → PDF (bottom-left origin) # CRITICAL: Y-axis flip! # For images, we position at bottom-left corner pdf_x_left = ocr_x_left pdf_y_bottom = page_height - ocr_y_bottom # Flip Y-axis logger.info(f"[圖片] '{image_path_str}' → PDF位置: ({pdf_x_left:.1f}, {pdf_y_bottom:.1f}), 寬x高: {bbox_width:.0f}x{bbox_height:.0f}") # Draw image using ReportLab # drawImage expects: (path, x, y, width, height) # where (x, y) is the bottom-left corner of the image pdf_canvas.drawImage( str(image_path), pdf_x_left, pdf_y_bottom, width=bbox_width, height=bbox_height, preserveAspectRatio=True, mask='auto' # Handle transparency ) logger.info(f"[圖片] ✓ 成功繪製 '{image_path_str}'") except Exception as e: logger.warning(f"Failed to draw image region: {e}") def generate_layout_pdf( self, json_path: Path, output_path: Path, source_file_path: Optional[Path] = None ) -> bool: """ Generate layout-preserving PDF from OCR JSON data Args: json_path: Path to OCR JSON file output_path: Path to save generated PDF source_file_path: Optional path to original source file for dimension extraction Returns: True if successful, False otherwise """ try: # Load JSON data ocr_data = self.load_ocr_json(json_path) if not ocr_data: return False # Use internal generation with pre-loaded data return self._generate_pdf_from_data( ocr_data=ocr_data, output_path=output_path, source_file_path=source_file_path, json_parent_dir=json_path.parent ) except Exception as e: logger.error(f"Failed to generate PDF: {e}") import traceback traceback.print_exc() return False def _draw_text_element_direct( self, pdf_canvas: canvas.Canvas, element: 'DocumentElement', page_height: float ): """ Draw text element with Direct track rich formatting. Handles line breaks, alignment, indentation, and applies StyleInfo. Args: pdf_canvas: ReportLab canvas object element: DocumentElement with text content page_height: Page height for coordinate transformation """ try: text_content = element.get_text() if not text_content: return # Get bounding box bbox = element.bbox if not bbox: logger.warning(f"No bbox for text element {element.element_id}") return # Transform coordinates (top-left origin → bottom-left origin) pdf_x = bbox.x0 pdf_y = page_height - bbox.y1 # Use bottom of bbox bbox_width = bbox.x1 - bbox.x0 bbox_height = bbox.y1 - bbox.y0 # Calculate font size from bbox height font_size = bbox_height * 0.75 font_size = max(min(font_size, 72), 4) # Clamp 4-72pt # Apply style if available alignment = 'left' # Default alignment if hasattr(element, 'style') and element.style: self._apply_text_style(pdf_canvas, element.style, default_size=font_size) # Get alignment from style if hasattr(element.style, 'alignment') and element.style.alignment: alignment = element.style.alignment else: # Use default font font_name = self.font_name if self.font_registered else 'Helvetica' pdf_canvas.setFont(font_name, font_size) # Get indentation from metadata (in points) indent = element.metadata.get('indent', 0) if element.metadata else 0 first_line_indent = element.metadata.get('first_line_indent', indent) if element.metadata else indent # Get paragraph spacing # spacing_before: Applied by adjusting starting Y position (pdf_y) # spacing_after: Recorded for debugging; in Direct track with fixed bbox, # actual spacing is already reflected in element positions paragraph_spacing_before = element.metadata.get('spacing_before', 0) if element.metadata else 0 paragraph_spacing_after = element.metadata.get('spacing_after', 0) if element.metadata else 0 # Handle line breaks lines = text_content.split('\n') line_height = font_size * 1.2 # 120% of font size # Apply paragraph spacing before (shift starting position up) pdf_y += paragraph_spacing_before # Draw each line with alignment for i, line in enumerate(lines): if not line.strip(): # Empty line: apply reduced spacing continue line_y = pdf_y - (i * line_height) # Get current font info font_name = pdf_canvas._fontname current_font_size = pdf_canvas._fontsize # Calculate line indentation line_indent = first_line_indent if i == 0 else indent # Calculate text width text_width = pdf_canvas.stringWidth(line, font_name, current_font_size) available_width = bbox_width - line_indent # Scale font if needed if text_width > available_width: scale_factor = available_width / text_width scaled_size = current_font_size * scale_factor * 0.95 scaled_size = max(scaled_size, 3) pdf_canvas.setFont(font_name, scaled_size) text_width = pdf_canvas.stringWidth(line, font_name, scaled_size) current_font_size = scaled_size # Calculate X position based on alignment line_x = pdf_x + line_indent if alignment == 'center': line_x = pdf_x + (bbox_width - text_width) / 2 elif alignment == 'right': line_x = pdf_x + bbox_width - text_width elif alignment == 'justify' and i < len(lines) - 1: # Justify: distribute extra space between words (except last line) words = line.split() if len(words) > 1: total_word_width = sum(pdf_canvas.stringWidth(word, font_name, current_font_size) for word in words) extra_space = available_width - total_word_width word_spacing = extra_space / (len(words) - 1) # Draw words with calculated spacing x_pos = pdf_x + line_indent for word in words: pdf_canvas.drawString(x_pos, line_y, word) word_width = pdf_canvas.stringWidth(word, font_name, current_font_size) x_pos += word_width + word_spacing # Reset font for next line and skip normal drawString if text_width > available_width: pdf_canvas.setFont(font_name, font_size) continue # else: left alignment uses line_x as-is # Draw the line at calculated position pdf_canvas.drawString(line_x, line_y, line) # Reset font size for next line if text_width > available_width: pdf_canvas.setFont(font_name, font_size) logger.debug(f"Drew text element: {text_content[:30]}... " f"({len(lines)} lines, align={alignment}, indent={indent}, " f"spacing_before={paragraph_spacing_before}, spacing_after={paragraph_spacing_after})") except Exception as e: logger.error(f"Failed to draw text element {element.element_id}: {e}") def _draw_table_element_direct( self, pdf_canvas: canvas.Canvas, element: 'DocumentElement', page_height: float ): """ Draw table element with Direct track positioning. Args: pdf_canvas: ReportLab canvas object element: DocumentElement with table content page_height: Page height for coordinate transformation """ try: # Get table HTML content if isinstance(element.content, TableData): html_content = element.content.to_html() elif isinstance(element.content, dict): html_content = element.content.get('html', str(element.content)) else: html_content = str(element.content) if not html_content: logger.warning(f"No HTML content for table {element.element_id}") return # Parse HTML parser = HTMLTableParser() parser.feed(html_content) if not parser.tables or not parser.tables[0]['rows']: logger.warning(f"No table data parsed for {element.element_id}") return table_data = parser.tables[0] rows = table_data['rows'] # Get bbox bbox = element.bbox if not bbox: logger.warning(f"No bbox for table {element.element_id}") return # Transform coordinates pdf_x = bbox.x0 pdf_y = page_height - bbox.y1 # Bottom of table table_width = bbox.x1 - bbox.x0 table_height = bbox.y1 - bbox.y0 # Build table data for ReportLab table_content = [] for row in rows: row_data = [cell['text'].strip() for cell in row['cells']] table_content.append(row_data) # Create table from reportlab.platypus import Table, TableStyle from reportlab.lib import colors t = Table(table_content, colWidths=[table_width / len(table_content[0])] * len(table_content[0])) # Apply style style = TableStyle([ ('GRID', (0, 0), (-1, -1), 0.5, colors.grey), ('FONTSIZE', (0, 0), (-1, -1), 8), ('ALIGN', (0, 0), (-1, -1), 'LEFT'), ('VALIGN', (0, 0), (-1, -1), 'TOP'), ]) t.setStyle(style) # Draw table t.wrapOn(pdf_canvas, table_width, table_height) t.drawOn(pdf_canvas, pdf_x, pdf_y) logger.debug(f"Drew table element: {len(rows)} rows") except Exception as e: logger.error(f"Failed to draw table element {element.element_id}: {e}") def _draw_image_element_direct( self, pdf_canvas: canvas.Canvas, element: 'DocumentElement', page_height: float, result_dir: Path ): """ Draw image element with Direct track positioning. Args: pdf_canvas: ReportLab canvas object element: DocumentElement with image content page_height: Page height for coordinate transformation result_dir: Directory containing image files """ try: # Get image path image_path_str = self._get_image_path(element) if not image_path_str: logger.warning(f"No image path for element {element.element_id}") return # Construct full path image_path = result_dir / image_path_str if not image_path.exists(): logger.warning(f"Image not found: {image_path}") return # Get bbox bbox = element.bbox if not bbox: logger.warning(f"No bbox for image {element.element_id}") return # Transform coordinates pdf_x = bbox.x0 pdf_y = page_height - bbox.y1 # Bottom of image image_width = bbox.x1 - bbox.x0 image_height = bbox.y1 - bbox.y0 # Draw image pdf_canvas.drawImage( str(image_path), pdf_x, pdf_y, width=image_width, height=image_height, preserveAspectRatio=True ) logger.debug(f"Drew image: {image_path_str}") except Exception as e: logger.error(f"Failed to draw image element {element.element_id}: {e}") # Singleton instance pdf_generator_service = PDFGeneratorService()