""" Layout-Preserving PDF Generation Service Generates PDF files that preserve the original document layout using OCR JSON data """ import json import logging import re from pathlib import Path from typing import Dict, List, Optional, Tuple, Union from datetime import datetime from reportlab.lib.pagesizes import A4, letter from reportlab.lib.units import mm from reportlab.pdfgen import canvas from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.platypus import Table, TableStyle from reportlab.lib import colors from reportlab.lib.enums import TA_CENTER, TA_LEFT, TA_RIGHT from reportlab.platypus import Paragraph from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from PIL import Image from html.parser import HTMLParser from app.core.config import settings # Import UnifiedDocument for dual-track support try: from app.models.unified_document import ( UnifiedDocument, DocumentElement, ElementType, BoundingBox, TableData, ProcessingTrack, DocumentMetadata, Dimensions, Page, StyleInfo ) UNIFIED_DOCUMENT_AVAILABLE = True except ImportError: UNIFIED_DOCUMENT_AVAILABLE = False UnifiedDocument = None logger = logging.getLogger(__name__) class HTMLTableParser(HTMLParser): """Parse HTML table to extract structure and data""" def __init__(self): super().__init__() self.tables = [] self.current_table = None self.current_row = None self.current_cell = None self.in_table = False def handle_starttag(self, tag, attrs): attrs_dict = dict(attrs) if tag == 'table': self.in_table = True self.current_table = {'rows': []} elif tag == 'tr' and self.in_table: self.current_row = {'cells': []} elif tag in ('td', 'th') and self.in_table and self.current_row is not None: colspan = int(attrs_dict.get('colspan', 1)) rowspan = int(attrs_dict.get('rowspan', 1)) self.current_cell = { 'text': '', 'is_header': tag == 'th', 'colspan': colspan, 'rowspan': rowspan } def handle_endtag(self, tag): if tag == 'table' and self.in_table: if self.current_table and self.current_table['rows']: self.tables.append(self.current_table) self.current_table = None self.in_table = False elif tag == 'tr' and self.current_row is not None: if self.current_table is not None: self.current_table['rows'].append(self.current_row) self.current_row = None elif tag in ('td', 'th') and self.current_cell is not None: if self.current_row is not None: self.current_row['cells'].append(self.current_cell) self.current_cell = None def handle_data(self, data): if self.current_cell is not None: self.current_cell['text'] += data.strip() + ' ' class PDFGeneratorService: """Service for generating layout-preserving PDFs from OCR JSON data""" # Font mapping from common fonts to PDF standard fonts FONT_MAPPING = { 'Arial': 'Helvetica', 'Arial Black': 'Helvetica-Bold', 'Times New Roman': 'Times-Roman', 'Times': 'Times-Roman', 'Courier New': 'Courier', 'Courier': 'Courier', 'Calibri': 'Helvetica', 'Cambria': 'Times-Roman', 'Georgia': 'Times-Roman', 'Verdana': 'Helvetica', 'Tahoma': 'Helvetica', 'Trebuchet MS': 'Helvetica', 'Comic Sans MS': 'Helvetica', 'Impact': 'Helvetica-Bold', 'Lucida Console': 'Courier', 'Palatino': 'Times-Roman', 'Garamond': 'Times-Roman', 'Bookman': 'Times-Roman', 'Century Gothic': 'Helvetica', 'Franklin Gothic': 'Helvetica', } # Style flags for text formatting STYLE_FLAG_BOLD = 1 STYLE_FLAG_ITALIC = 2 STYLE_FLAG_UNDERLINE = 4 STYLE_FLAG_STRIKETHROUGH = 8 def __init__(self): """Initialize PDF generator with font configuration""" self.font_name = 'NotoSansSC' self.font_path = None self.font_registered = False self.current_processing_track = None # Track type for current document self._register_chinese_font() def _register_chinese_font(self): """Register Chinese font for PDF generation""" try: # Get font path from settings font_path = Path(settings.chinese_font_path) # Try relative path from project root if not font_path.is_absolute(): # Adjust path - settings.chinese_font_path starts with ./backend/ project_root = Path(__file__).resolve().parent.parent.parent.parent font_path = project_root / font_path if not font_path.exists(): logger.error(f"Chinese font not found at {font_path}") return # Register font pdfmetrics.registerFont(TTFont(self.font_name, str(font_path))) self.font_path = font_path self.font_registered = True logger.info(f"Chinese font registered: {self.font_name} from {font_path}") except Exception as e: logger.error(f"Failed to register Chinese font: {e}") self.font_registered = False def _parse_color(self, color_value) -> Tuple[float, float, float]: """ Parse color value to RGB tuple. Args: color_value: Color as hex string (#RRGGBB), RGB tuple, or color name Returns: RGB tuple with values 0-1 for ReportLab """ if not color_value: return (0, 0, 0) # Default to black try: # Handle hex color (#RRGGBB or #RGB) if isinstance(color_value, str) and color_value.startswith('#'): hex_color = color_value.lstrip('#') # Expand short form (#RGB -> #RRGGBB) if len(hex_color) == 3: hex_color = ''.join([c*2 for c in hex_color]) if len(hex_color) == 6: r = int(hex_color[0:2], 16) / 255.0 g = int(hex_color[2:4], 16) / 255.0 b = int(hex_color[4:6], 16) / 255.0 return (r, g, b) # Handle RGB tuple or list elif isinstance(color_value, (tuple, list)) and len(color_value) >= 3: r, g, b = color_value[0:3] # Normalize to 0-1 if values are 0-255 if any(v > 1 for v in [r, g, b]): return (r/255.0, g/255.0, b/255.0) return (r, g, b) except (ValueError, TypeError) as e: logger.warning(f"Failed to parse color {color_value}: {e}") # Default to black return (0, 0, 0) def _map_font(self, font_name: Optional[str]) -> str: """ Map font name to PDF standard font. Args: font_name: Original font name Returns: PDF standard font name """ if not font_name: return 'Helvetica' # Direct lookup if font_name in self.FONT_MAPPING: return self.FONT_MAPPING[font_name] # Case-insensitive lookup font_lower = font_name.lower() for orig_font, pdf_font in self.FONT_MAPPING.items(): if orig_font.lower() == font_lower: return pdf_font # Partial match for common patterns if 'arial' in font_lower: return 'Helvetica' elif 'times' in font_lower: return 'Times-Roman' elif 'courier' in font_lower: return 'Courier' # Default fallback logger.debug(f"Font '{font_name}' not found in mapping, using Helvetica") return 'Helvetica' def _apply_text_style(self, c: canvas.Canvas, style_info, default_size: float = 12): """ Apply text styling from StyleInfo to PDF canvas. Args: c: ReportLab canvas object style_info: StyleInfo object or dict with font, size, color, flags default_size: Default font size if not specified """ if not style_info: # Apply default styling c.setFont('Helvetica', default_size) c.setFillColorRGB(0, 0, 0) return try: # Extract style attributes if hasattr(style_info, '__dict__'): # StyleInfo object font_family = getattr(style_info, 'font_name', None) font_size = getattr(style_info, 'font_size', default_size) color = getattr(style_info, 'text_color', None) font_weight = getattr(style_info, 'font_weight', 'normal') font_style = getattr(style_info, 'font_style', 'normal') # Legacy flags support flags = getattr(style_info, 'flags', 0) elif isinstance(style_info, dict): # Dictionary font_family = style_info.get('font_name') font_size = style_info.get('font_size', default_size) color = style_info.get('text_color') font_weight = style_info.get('font_weight', 'normal') font_style = style_info.get('font_style', 'normal') # Legacy flags support flags = style_info.get('flags', 0) else: # Unknown format, use defaults c.setFont('Helvetica', default_size) c.setFillColorRGB(0, 0, 0) return # Map font name base_font = self._map_font(font_family) if font_family else 'Helvetica' # Determine bold and italic from font_weight/font_style (preferred) or flags (legacy) is_bold = font_weight == 'bold' if font_weight else bool(flags & self.STYLE_FLAG_BOLD) is_italic = font_style == 'italic' if font_style else bool(flags & self.STYLE_FLAG_ITALIC) # Apply bold/italic modifiers if is_bold or is_italic: if is_bold and is_italic: # Try bold-italic variant if 'Helvetica' in base_font: base_font = 'Helvetica-BoldOblique' elif 'Times' in base_font: base_font = 'Times-BoldItalic' elif 'Courier' in base_font: base_font = 'Courier-BoldOblique' elif is_bold: # Try bold variant if 'Helvetica' in base_font: base_font = 'Helvetica-Bold' elif 'Times' in base_font: base_font = 'Times-Bold' elif 'Courier' in base_font: base_font = 'Courier-Bold' elif is_italic: # Try italic variant if 'Helvetica' in base_font: base_font = 'Helvetica-Oblique' elif 'Times' in base_font: base_font = 'Times-Italic' elif 'Courier' in base_font: base_font = 'Courier-Oblique' # Apply font and size actual_size = font_size if font_size and font_size > 0 else default_size try: c.setFont(base_font, actual_size) except KeyError: # Font not available, fallback logger.warning(f"Font '{base_font}' not available, using Helvetica") c.setFont('Helvetica', actual_size) # Apply color rgb_color = None if hasattr(style_info, 'get_rgb_color'): # Use StyleInfo method if available rgb_color = style_info.get_rgb_color() elif color is not None: # Parse from extracted color value r, g, b = self._parse_color(color) rgb_color = (r, g, b) if rgb_color: # text_color is in 0-255 range, convert to 0-1 for ReportLab r, g, b = rgb_color if any(v > 1 for v in [r, g, b]): r, g, b = r/255.0, g/255.0, b/255.0 c.setFillColorRGB(r, g, b) else: c.setFillColorRGB(0, 0, 0) # Default black except Exception as e: logger.error(f"Failed to apply text style: {e}") # Fallback to defaults c.setFont('Helvetica', default_size) c.setFillColorRGB(0, 0, 0) def load_ocr_json(self, json_path: Path) -> Optional[Dict]: """ Load and parse OCR JSON result file Args: json_path: Path to JSON file Returns: Parsed JSON data or None if failed """ try: with open(json_path, 'r', encoding='utf-8') as f: data = json.load(f) logger.info(f"Loaded OCR JSON: {json_path.name}") return data except Exception as e: logger.error(f"Failed to load JSON {json_path}: {e}") return None def _get_image_path(self, element) -> Optional[str]: """ Get image path with fallback logic. Checks multiple locations in order: 1. element.content["saved_path"] - Direct track saved path 2. element.content["path"] - Legacy path 3. element.content["image_path"] - Alternative path 4. element.saved_path - Direct attribute 5. element.metadata["path"] - Metadata fallback Args: element: DocumentElement object Returns: Path to image file or None if not found """ # Check content dictionary if isinstance(element.content, dict): for key in ['saved_path', 'path', 'image_path']: if key in element.content: return element.content[key] # Check direct attribute if hasattr(element, 'saved_path') and element.saved_path: return element.saved_path # Check metadata if element.metadata and isinstance(element.metadata, dict): if 'path' in element.metadata: return element.metadata['path'] if 'saved_path' in element.metadata: return element.metadata['saved_path'] return None def convert_unified_document_to_ocr_data(self, unified_doc: 'UnifiedDocument') -> Dict: """ Convert UnifiedDocument to OCR data format for PDF generation. This method transforms the UnifiedDocument structure into the legacy OCR data format that the PDF generator expects, supporting both OCR and DIRECT processing tracks. Args: unified_doc: UnifiedDocument object from either processing track Returns: Dictionary in OCR data format with text_regions, images_metadata, layout_data """ text_regions = [] images_metadata = [] layout_elements = [] for page in unified_doc.pages: page_num = page.page_number # 1-based for element in page.elements: # Convert BoundingBox to polygon format [[x,y], [x,y], [x,y], [x,y]] bbox_polygon = [ [element.bbox.x0, element.bbox.y0], # top-left [element.bbox.x1, element.bbox.y0], # top-right [element.bbox.x1, element.bbox.y1], # bottom-right [element.bbox.x0, element.bbox.y1], # bottom-left ] # Handle text elements if element.is_text or element.type in [ ElementType.TEXT, ElementType.TITLE, ElementType.HEADER, ElementType.FOOTER, ElementType.PARAGRAPH, ElementType.CAPTION, ElementType.LIST_ITEM, ElementType.FOOTNOTE, ElementType.REFERENCE ]: text_content = element.get_text() if text_content: text_region = { 'text': text_content, 'bbox': bbox_polygon, 'confidence': element.confidence or 1.0, 'page': page_num } # Include style information if available (for Direct track) if hasattr(element, 'style') and element.style: text_region['style'] = element.style text_regions.append(text_region) # Handle table elements elif element.type == ElementType.TABLE: # Convert TableData to HTML for layout_data if isinstance(element.content, TableData): html_content = element.content.to_html() elif isinstance(element.content, dict): html_content = element.content.get('html', str(element.content)) else: html_content = str(element.content) layout_elements.append({ 'type': 'table', 'content': html_content, 'bbox': [element.bbox.x0, element.bbox.y0, element.bbox.x1, element.bbox.y1], 'page': page_num - 1 # layout uses 0-based }) # Add bbox to images_metadata for text overlap filtering # (no actual image file, just bbox for filtering) images_metadata.append({ 'image_path': None, # No fake table image 'bbox': bbox_polygon, 'page': page_num - 1, # 0-based for images_metadata 'type': 'table', 'element_id': element.element_id }) # Handle image/visual elements elif element.is_visual or element.type in [ ElementType.IMAGE, ElementType.FIGURE, ElementType.CHART, ElementType.DIAGRAM, ElementType.LOGO ]: # Get image path using fallback logic image_path = self._get_image_path(element) # Only add if we found a valid path if image_path: images_metadata.append({ 'image_path': image_path, 'bbox': bbox_polygon, 'page': page_num - 1, # 0-based 'type': element.type.value }) logger.debug(f"Found image path: {image_path} for element {element.element_id}") else: logger.warning(f"No image path found for visual element {element.element_id}") # Build page dimensions mapping for multi-page support page_dimensions = {} for page in unified_doc.pages: page_dimensions[page.page_number - 1] = { # 0-based index 'width': page.dimensions.width, 'height': page.dimensions.height } # Build OCR data structure ocr_data = { 'text_regions': text_regions, 'images_metadata': images_metadata, 'layout_data': { 'elements': layout_elements, 'total_elements': len(layout_elements) }, 'total_pages': unified_doc.page_count, 'ocr_dimensions': { 'width': unified_doc.pages[0].dimensions.width if unified_doc.pages else 0, 'height': unified_doc.pages[0].dimensions.height if unified_doc.pages else 0 }, 'page_dimensions': page_dimensions, # Per-page dimensions for multi-page support # Metadata for tracking '_from_unified_document': True, '_processing_track': unified_doc.metadata.processing_track.value } logger.info(f"Converted UnifiedDocument to OCR data: " f"{len(text_regions)} text regions, " f"{len(images_metadata)} images, " f"{len(layout_elements)} layout elements, " f"track={unified_doc.metadata.processing_track.value}") return ocr_data def generate_from_unified_document( self, unified_doc: 'UnifiedDocument', output_path: Path, source_file_path: Optional[Path] = None ) -> bool: """ Generate layout-preserving PDF directly from UnifiedDocument. This method supports both OCR and DIRECT processing tracks, preserving layout and coordinate information from either source. Args: unified_doc: UnifiedDocument object output_path: Path to save generated PDF source_file_path: Optional path to original source file Returns: True if successful, False otherwise """ if not UNIFIED_DOCUMENT_AVAILABLE: logger.error("UnifiedDocument support not available") return False try: # Detect processing track for track-specific rendering processing_track = None if hasattr(unified_doc, 'metadata') and unified_doc.metadata: if hasattr(unified_doc.metadata, 'processing_track'): processing_track = unified_doc.metadata.processing_track elif isinstance(unified_doc.metadata, dict): processing_track = unified_doc.metadata.get('processing_track') # Route to track-specific rendering method # ProcessingTrack is (str, Enum), so comparing with enum value works for both string and enum # HYBRID track uses Direct track rendering (Direct text/tables + OCR images) is_direct_track = (processing_track == ProcessingTrack.DIRECT or processing_track == ProcessingTrack.HYBRID) logger.info(f"Processing track: {processing_track}, using {'Direct' if is_direct_track else 'OCR'} track rendering") if is_direct_track: # Direct track: Rich formatting preservation return self._generate_direct_track_pdf( unified_doc=unified_doc, output_path=output_path, source_file_path=source_file_path ) else: # OCR track: Simplified rendering (backward compatible) return self._generate_ocr_track_pdf( unified_doc=unified_doc, output_path=output_path, source_file_path=source_file_path ) except Exception as e: logger.error(f"Failed to generate PDF from UnifiedDocument: {e}") import traceback traceback.print_exc() return False def _is_element_inside_regions(self, element_bbox, regions_elements, overlap_threshold=0.5) -> bool: """ Check if an element overlaps significantly with any exclusion region (table, image). This prevents duplicate rendering when text overlaps with tables/images. Direct extraction often extracts both the structured element (table/image) AND its text content as separate text blocks. Uses overlap ratio detection instead of strict containment, since text blocks from DirectExtractionEngine may be larger than detected table/image regions (e.g., text block includes heading above table). Args: element_bbox: BBox of the element to check regions_elements: List of region elements (tables, images) to check against overlap_threshold: Minimum overlap percentage to trigger filtering (default 0.5 = 50%) Returns: True if element overlaps ≥50% with any region, False otherwise """ if not element_bbox: return False e_x0, e_y0, e_x1, e_y1 = element_bbox.x0, element_bbox.y0, element_bbox.x1, element_bbox.y1 elem_area = (e_x1 - e_x0) * (e_y1 - e_y0) if elem_area <= 0: return False for region in regions_elements: r_bbox = region.bbox if not r_bbox: continue # Calculate overlap rectangle overlap_x0 = max(e_x0, r_bbox.x0) overlap_y0 = max(e_y0, r_bbox.y0) overlap_x1 = min(e_x1, r_bbox.x1) overlap_y1 = min(e_y1, r_bbox.y1) # Check if there is any overlap if overlap_x0 < overlap_x1 and overlap_y0 < overlap_y1: # Calculate overlap area overlap_area = (overlap_x1 - overlap_x0) * (overlap_y1 - overlap_y0) overlap_ratio = overlap_area / elem_area # If element overlaps more than threshold, filter it out if overlap_ratio >= overlap_threshold: return True return False def _generate_direct_track_pdf( self, unified_doc: 'UnifiedDocument', output_path: Path, source_file_path: Optional[Path] = None ) -> bool: """ Generate PDF with rich formatting preservation for Direct track. This method processes UnifiedDocument directly without converting to legacy OCR format, preserving StyleInfo and applying proper text formatting including line breaks. Args: unified_doc: UnifiedDocument from Direct extraction output_path: Path to save generated PDF source_file_path: Optional path to original source file Returns: True if successful, False otherwise """ try: logger.info("=== Direct Track PDF Generation ===") logger.info(f"Total pages: {len(unified_doc.pages)}") # Set current track for helper methods (may be DIRECT or HYBRID) if hasattr(unified_doc, 'metadata') and unified_doc.metadata: self.current_processing_track = unified_doc.metadata.processing_track else: self.current_processing_track = ProcessingTrack.DIRECT # Get page dimensions from first page (for canvas initialization) if not unified_doc.pages: logger.error("No pages in document") return False first_page = unified_doc.pages[0] page_width = first_page.dimensions.width page_height = first_page.dimensions.height logger.info(f"First page dimensions: {page_width} x {page_height}") # Create PDF canvas with first page dimensions (will be updated per page) from reportlab.pdfgen import canvas pdf_canvas = canvas.Canvas(str(output_path), pagesize=(page_width, page_height)) # Process each page for page_idx, page in enumerate(unified_doc.pages): logger.info(f">>> Processing page {page_idx + 1}/{len(unified_doc.pages)}") # Get current page dimensions current_page_width = page.dimensions.width current_page_height = page.dimensions.height logger.info(f"Page {page_idx + 1} dimensions: {current_page_width} x {current_page_height}") if page_idx > 0: pdf_canvas.showPage() # Set page size for current page pdf_canvas.setPageSize((current_page_width, current_page_height)) # Separate elements by type text_elements = [] table_elements = [] image_elements = [] list_elements = [] # FIX: Collect exclusion regions (tables, images) to prevent duplicate rendering regions_to_avoid = [] for element in page.elements: if element.type == ElementType.TABLE: table_elements.append(element) regions_to_avoid.append(element) # Tables are exclusion regions elif element.is_visual or element.type in [ ElementType.IMAGE, ElementType.FIGURE, ElementType.CHART, ElementType.DIAGRAM, ElementType.LOGO ]: image_elements.append(element) # Only add real images to exclusion regions, NOT charts/diagrams # Charts often have large bounding boxes that include text labels # which should be rendered as selectable text on top if element.type in [ElementType.IMAGE, ElementType.FIGURE, ElementType.LOGO]: regions_to_avoid.append(element) elif element.type == ElementType.LIST_ITEM: list_elements.append(element) elif self._is_list_item_fallback(element): # Fallback detection: Check metadata and text patterns list_elements.append(element) # Mark as list item for downstream processing element.type = ElementType.LIST_ITEM elif element.is_text or element.type in [ ElementType.TEXT, ElementType.TITLE, ElementType.HEADER, ElementType.FOOTER, ElementType.PARAGRAPH ]: text_elements.append(element) logger.info(f"Page {page_idx + 1}: {len(text_elements)} text, " f"{len(table_elements)} tables, {len(image_elements)} images, " f"{len(list_elements)} list items") # Use original element order from extraction engine # The extraction engine has already sorted elements by reading order, # handling multi-column layouts correctly (top-to-bottom, left-to-right) all_elements = [] # Preserve original order by iterating through page.elements for elem in page.elements: if elem in image_elements: all_elements.append(('image', elem)) elif elem in table_elements: all_elements.append(('table', elem)) elif elem in list_elements: all_elements.append(('list', elem)) elif elem in text_elements: all_elements.append(('text', elem)) logger.debug(f"Drawing {len(all_elements)} elements in extraction order (preserves multi-column reading order)") logger.debug(f"Exclusion regions: {len(regions_to_avoid)} (tables/images/charts)") # Debug: Log exclusion region types region_types = {} for region in regions_to_avoid: region_type = region.type.name region_types[region_type] = region_types.get(region_type, 0) + 1 if region_types: logger.debug(f" Exclusion region breakdown: {region_types}") # Draw elements in document order for elem_type, elem in all_elements: if elem_type == 'image': self._draw_image_element_direct(pdf_canvas, elem, current_page_height, output_path.parent) elif elem_type == 'table': self._draw_table_element_direct(pdf_canvas, elem, current_page_height) elif elem_type == 'list': # FIX: Check if list item overlaps with table/image if not self._is_element_inside_regions(elem.bbox, regions_to_avoid): self._draw_text_element_direct(pdf_canvas, elem, current_page_height) else: logger.debug(f"Skipping list element {elem.element_id} inside table/image region") elif elem_type == 'text': # FIX: Check if text overlaps with table/image before drawing if not self._is_element_inside_regions(elem.bbox, regions_to_avoid): self._draw_text_element_direct(pdf_canvas, elem, current_page_height) else: logger.debug(f"Skipping text element {elem.element_id} inside table/image region") # Save PDF pdf_canvas.save() logger.info(f"Direct track PDF saved to {output_path}") # Reset track self.current_processing_track = None return True except Exception as e: logger.error(f"Failed to generate Direct track PDF: {e}") import traceback traceback.print_exc() self.current_processing_track = None return False def _generate_ocr_track_pdf( self, unified_doc: 'UnifiedDocument', output_path: Path, source_file_path: Optional[Path] = None ) -> bool: """ Generate PDF with simplified rendering for OCR track. This method uses the existing OCR data conversion and rendering pipeline for backward compatibility. Args: unified_doc: UnifiedDocument from OCR processing output_path: Path to save generated PDF source_file_path: Optional path to original source file Returns: True if successful, False otherwise """ try: logger.info("=== OCR Track PDF Generation ===") # Set current track self.current_processing_track = 'ocr' # Convert UnifiedDocument to OCR data format (legacy) ocr_data = self.convert_unified_document_to_ocr_data(unified_doc) # Use existing generation pipeline result = self._generate_pdf_from_data( ocr_data=ocr_data, output_path=output_path, source_file_path=source_file_path ) # Reset track self.current_processing_track = None return result except Exception as e: logger.error(f"Failed to generate OCR track PDF: {e}") import traceback traceback.print_exc() self.current_processing_track = None return False def _generate_pdf_from_data( self, ocr_data: Dict, output_path: Path, source_file_path: Optional[Path] = None, json_parent_dir: Optional[Path] = None ) -> bool: """ Internal method to generate PDF from OCR data dictionary. This is the core generation logic extracted for reuse by both JSON-based and UnifiedDocument-based generation paths. Args: ocr_data: OCR data dictionary output_path: Path to save generated PDF source_file_path: Optional path to original source file json_parent_dir: Directory containing images (for JSON-based generation) Returns: True if successful, False otherwise """ try: # Note: Removed PDF caching - always regenerate to ensure latest code changes take effect # If caching is needed, implement at a higher level with proper cache invalidation # Get text regions text_regions = ocr_data.get('text_regions', []) if not text_regions: logger.warning("No text regions found in data") # Don't fail - might have only tables/images # Get images metadata images_metadata = ocr_data.get('images_metadata', []) # Get layout data layout_data = ocr_data.get('layout_data', {}) # Step 1: Get OCR processing dimensions (for first page / default) ocr_width, ocr_height = self.calculate_page_dimensions(ocr_data, source_file_path=None) logger.info(f"OCR 處理時使用的座標系尺寸 (第一頁): {ocr_width:.1f} x {ocr_height:.1f}") # Step 2: Get page dimensions mapping for multi-page support page_dimensions = ocr_data.get('page_dimensions', {}) if not page_dimensions: # Fallback: use first page dimensions for all pages page_dimensions = {0: {'width': ocr_width, 'height': ocr_height}} logger.info("No page_dimensions found, using first page size for all pages") # Step 3: Get original file dimensions for all pages original_page_sizes = {} if source_file_path: original_page_sizes = self.get_all_page_sizes(source_file_path) if original_page_sizes: logger.info(f"從原始文件獲取到 {len(original_page_sizes)} 頁尺寸") else: logger.warning(f"無法獲取原始文件尺寸,將使用 OCR/UnifiedDocument 尺寸") else: logger.info(f"無原始文件,將使用 OCR/UnifiedDocument 尺寸") # Determine initial canvas size (will be updated per page) # Priority: original file first page > OCR/UnifiedDocument first page if 0 in original_page_sizes: target_width, target_height = original_page_sizes[0] logger.info(f"初始 PDF 尺寸(來自原始文件首頁): {target_width:.1f} x {target_height:.1f}") else: target_width, target_height = ocr_width, ocr_height logger.info(f"初始 PDF 尺寸(來自 OCR/UnifiedDocument): {target_width:.1f} x {target_height:.1f}") # Create PDF canvas with initial page size (will be updated per page) pdf_canvas = canvas.Canvas(str(output_path), pagesize=(target_width, target_height)) # Filter text regions to avoid overlap with tables/images regions_to_avoid = images_metadata table_count = len([img for img in images_metadata if img.get('type') == 'table']) logger.info(f"過濾文字區域: {len(regions_to_avoid)} 個區域需要避免 (含 {table_count} 個表格)") filtered_text_regions = self._filter_text_in_regions(text_regions, regions_to_avoid) # Group regions by page pages_data = {} for region in filtered_text_regions: page_num = region.get('page', 1) if page_num not in pages_data: pages_data[page_num] = [] pages_data[page_num].append(region) # Get table elements from layout_data table_elements = [] if layout_data and layout_data.get('elements'): table_elements = [e for e in layout_data['elements'] if e.get('type') == 'table'] # Process each page total_pages = ocr_data.get('total_pages', 1) logger.info(f"開始處理 {total_pages} 頁 PDF") # Determine image directory if json_parent_dir is None: json_parent_dir = output_path.parent for page_num in range(1, total_pages + 1): logger.info(f">>> 處理第 {page_num}/{total_pages} 頁") # Get current page dimensions with priority order: # 1. Original file dimensions (highest priority) # 2. OCR/UnifiedDocument dimensions # 3. Fallback to first page dimensions page_idx = page_num - 1 dimension_source = "unknown" # Priority 1: Original file dimensions if page_idx in original_page_sizes: current_target_w, current_target_h = original_page_sizes[page_idx] dimension_source = "original_file" # Priority 2: OCR/UnifiedDocument dimensions elif page_idx in page_dimensions: current_page_dims = page_dimensions[page_idx] current_target_w = float(current_page_dims['width']) current_target_h = float(current_page_dims['height']) dimension_source = "ocr_unified_doc" # Priority 3: Fallback to first page else: current_target_w = ocr_width current_target_h = ocr_height dimension_source = "fallback_first_page" logger.warning(f"No dimensions for page {page_num}, using first page size") # Calculate scale factors for coordinate transformation # OCR coordinates need to be scaled if original file dimensions differ if dimension_source == "original_file": # Get OCR dimensions for this page to calculate scale if page_idx in page_dimensions: ocr_page_w = float(page_dimensions[page_idx]['width']) ocr_page_h = float(page_dimensions[page_idx]['height']) else: ocr_page_w = ocr_width ocr_page_h = ocr_height current_scale_w = current_target_w / ocr_page_w if ocr_page_w > 0 else 1.0 current_scale_h = current_target_h / ocr_page_h if ocr_page_h > 0 else 1.0 else: # Using OCR/UnifiedDocument dimensions directly, no scaling needed current_scale_w = 1.0 current_scale_h = 1.0 logger.info(f"第 {page_num} 頁尺寸: {current_target_w:.1f} x {current_target_h:.1f} " f"(來源: {dimension_source}, 縮放: {current_scale_w:.3f}x{current_scale_h:.3f})") if page_num > 1: pdf_canvas.showPage() # Set page size for current page pdf_canvas.setPageSize((current_target_w, current_target_h)) # Get regions for this page page_text_regions = pages_data.get(page_num, []) page_table_regions = [t for t in table_elements if t.get('page') == page_num - 1] page_image_regions = [ img for img in images_metadata if img.get('page') == page_num - 1 and img.get('type') != 'table' and img.get('image_path') is not None # Skip table placeholders ] # Draw in layers: images → tables → text # 1. Draw images (bottom layer) for img_meta in page_image_regions: self.draw_image_region( pdf_canvas, img_meta, current_target_h, json_parent_dir, current_scale_w, current_scale_h ) # 2. Draw tables (middle layer) for table_elem in page_table_regions: self.draw_table_region( pdf_canvas, table_elem, images_metadata, current_target_h, current_scale_w, current_scale_h ) # 3. Draw text (top layer) for region in page_text_regions: self.draw_text_region( pdf_canvas, region, current_target_h, current_scale_w, current_scale_h ) logger.info(f"<<< 第 {page_num} 頁完成") # Save PDF pdf_canvas.save() file_size = output_path.stat().st_size logger.info(f"Generated PDF: {output_path.name} ({file_size} bytes)") return True except Exception as e: logger.error(f"Failed to generate PDF: {e}") import traceback traceback.print_exc() return False def calculate_page_dimensions(self, ocr_data: Dict, source_file_path: Optional[Path] = None) -> Tuple[float, float]: """ 從 OCR JSON 數據中取得頁面尺寸。 優先使用明確的 dimensions 欄位,失敗時才回退到 bbox 推斷。 Args: ocr_data: Complete OCR data dictionary with text_regions and layout source_file_path: Optional path to source file (fallback only) Returns: Tuple of (width, height) in points """ # *** 優先級 1: 檢查 ocr_dimensions (UnifiedDocument 轉換來的) *** if 'ocr_dimensions' in ocr_data: dims = ocr_data['ocr_dimensions'] # Handle both dict format {'width': w, 'height': h} and # list format [{'page': 1, 'width': w, 'height': h}, ...] if isinstance(dims, list) and len(dims) > 0: dims = dims[0] # Use first page dimensions if isinstance(dims, dict): w = float(dims.get('width', 0)) h = float(dims.get('height', 0)) if w > 0 and h > 0: logger.info(f"使用 ocr_dimensions 欄位的頁面尺寸: {w:.1f} x {h:.1f}") return (w, h) # *** 優先級 2: 檢查原始 JSON 的 dimensions *** if 'dimensions' in ocr_data: dims = ocr_data['dimensions'] w = float(dims.get('width', 0)) h = float(dims.get('height', 0)) if w > 0 and h > 0: logger.info(f"使用 dimensions 欄位的頁面尺寸: {w:.1f} x {h:.1f}") return (w, h) # *** 優先級 3: Fallback - 從 bbox 推斷 (僅當上述皆缺失時使用) *** logger.info("dimensions 欄位不可用,回退到 bbox 推斷") max_x = 0 max_y = 0 # *** 關鍵修復:檢查所有可能包含 bbox 的字段 *** # 不同版本的 OCR 輸出可能使用不同的字段名 all_regions = [] # 1. text_regions - 包含所有文字區域(最常見) if 'text_regions' in ocr_data and isinstance(ocr_data['text_regions'], list): all_regions.extend(ocr_data['text_regions']) # 2. image_regions - 包含圖片區域 if 'image_regions' in ocr_data and isinstance(ocr_data['image_regions'], list): all_regions.extend(ocr_data['image_regions']) # 3. tables - 包含表格區域 if 'tables' in ocr_data and isinstance(ocr_data['tables'], list): all_regions.extend(ocr_data['tables']) # 4. layout - 可能包含布局信息(可能是空列表) if 'layout' in ocr_data and isinstance(ocr_data['layout'], list): all_regions.extend(ocr_data['layout']) # 5. layout_data.elements - PP-StructureV3 格式 if 'layout_data' in ocr_data and isinstance(ocr_data['layout_data'], dict): elements = ocr_data['layout_data'].get('elements', []) if elements: all_regions.extend(elements) if not all_regions: # 如果 JSON 為空,回退到原始檔案尺寸 logger.warning("JSON 中沒有找到 text_regions, image_regions, tables, layout 或 layout_data.elements,回退到原始檔案尺寸。") if source_file_path: dims = self.get_original_page_size(source_file_path) if dims: return dims return A4 region_count = 0 for region in all_regions: try: bbox = region.get('bbox') if not bbox: continue region_count += 1 # *** 關鍵修復:正確處理多邊形 [[x, y], ...] 格式 *** if isinstance(bbox[0], (int, float)): # 處理簡單的 [x1, y1, x2, y2] 格式 max_x = max(max_x, bbox[2]) max_y = max(max_y, bbox[3]) elif isinstance(bbox[0], (list, tuple)): # 處理多邊形 [[x, y], ...] 格式 x_coords = [p[0] for p in bbox if isinstance(p, (list, tuple)) and len(p) >= 2] y_coords = [p[1] for p in bbox if isinstance(p, (list, tuple)) and len(p) >= 2] if x_coords and y_coords: max_x = max(max_x, max(x_coords)) max_y = max(max_y, max(y_coords)) except Exception as e: logger.warning(f"Error processing bbox {bbox}: {e}") if max_x > 0 and max_y > 0: logger.info(f"從 {region_count} 個區域中推斷出的 OCR 座標系尺寸: {max_x:.1f} x {max_y:.1f}") return (max_x, max_y) else: # 如果所有 bbox 都解析失敗,才回退 logger.warning("無法從 bbox 推斷尺寸,回退到原始檔案尺寸。") if source_file_path: dims = self.get_original_page_size(source_file_path) if dims: return dims return A4 def get_all_page_sizes(self, file_path: Path) -> Dict[int, Tuple[float, float]]: """ Extract dimensions for all pages from original source file Args: file_path: Path to original file (image or PDF) Returns: Dict mapping page index (0-based) to (width, height) in points Empty dict if extraction fails """ page_sizes = {} try: if not file_path.exists(): logger.warning(f"File not found: {file_path}") return page_sizes # For images, single page with dimensions from PIL if file_path.suffix.lower() in ['.png', '.jpg', '.jpeg', '.bmp', '.tiff']: img = Image.open(file_path) # Use pixel dimensions directly as points (1:1 mapping) # This matches how PaddleOCR reports coordinates width_pt = float(img.width) height_pt = float(img.height) page_sizes[0] = (width_pt, height_pt) logger.info(f"Extracted dimensions from image: {width_pt:.1f} x {height_pt:.1f} points (1:1 pixel mapping)") return page_sizes # For PDFs, extract dimensions for all pages using PyPDF2 if file_path.suffix.lower() == '.pdf': try: from PyPDF2 import PdfReader reader = PdfReader(file_path) total_pages = len(reader.pages) for page_idx in range(total_pages): page = reader.pages[page_idx] # MediaBox gives [x1, y1, x2, y2] in points mediabox = page.mediabox width_pt = float(mediabox.width) height_pt = float(mediabox.height) # IMPORTANT: Consider page rotation! # PDF pages can have /Rotate attribute (0, 90, 180, 270) # When rotation is 90 or 270 degrees, width and height should be swapped # because pdf2image and PDF viewers apply this rotation when rendering rotation = page.get('/Rotate', 0) if rotation is None: rotation = 0 rotation = int(rotation) % 360 if rotation in (90, 270): # Swap width and height for 90/270 degree rotation width_pt, height_pt = height_pt, width_pt logger.info(f"Page {page_idx}: Rotation={rotation}°, swapped dimensions to {width_pt:.1f} x {height_pt:.1f}") page_sizes[page_idx] = (width_pt, height_pt) logger.info(f"Extracted dimensions from PDF: {total_pages} pages") for idx, (w, h) in page_sizes.items(): logger.debug(f" Page {idx}: {w:.1f} x {h:.1f} points") return page_sizes except ImportError: logger.warning("PyPDF2 not available, cannot extract PDF dimensions") except Exception as e: logger.warning(f"Failed to extract PDF dimensions: {e}") except Exception as e: logger.warning(f"Failed to get page sizes from {file_path}: {e}") return page_sizes def get_original_page_size(self, file_path: Path) -> Optional[Tuple[float, float]]: """ Extract first page dimensions from original source file (backward compatibility) Args: file_path: Path to original file (image or PDF) Returns: Tuple of (width, height) in points or None """ page_sizes = self.get_all_page_sizes(file_path) if 0 in page_sizes: return page_sizes[0] return None def _get_bbox_coords(self, bbox: Union[Dict, List[List[float]], List[float]]) -> Optional[Tuple[float, float, float, float]]: """將任何 bbox 格式 (dict, 多邊形或 [x1,y1,x2,y2]) 轉換為 [x_min, y_min, x_max, y_max]""" try: if bbox is None: return None # Dict format from UnifiedDocument: {"x0": ..., "y0": ..., "x1": ..., "y1": ...} if isinstance(bbox, dict): if 'x0' in bbox and 'y0' in bbox and 'x1' in bbox and 'y1' in bbox: return float(bbox['x0']), float(bbox['y0']), float(bbox['x1']), float(bbox['y1']) else: logger.warning(f"Dict bbox 缺少必要欄位: {bbox}") return None if not isinstance(bbox, (list, tuple)) or len(bbox) < 4: return None if isinstance(bbox[0], (list, tuple)): # 處理多邊形 [[x, y], ...] x_coords = [p[0] for p in bbox if isinstance(p, (list, tuple)) and len(p) >= 2] y_coords = [p[1] for p in bbox if isinstance(p, (list, tuple)) and len(p) >= 2] if not x_coords or not y_coords: return None return min(x_coords), min(y_coords), max(x_coords), max(y_coords) elif isinstance(bbox[0], (int, float)) and len(bbox) == 4: # 處理 [x1, y1, x2, y2] return float(bbox[0]), float(bbox[1]), float(bbox[2]), float(bbox[3]) else: logger.warning(f"未知的 bbox 格式: {bbox}") return None except Exception as e: logger.error(f"解析 bbox {bbox} 時出錯: {e}") return None def _is_bbox_inside(self, inner_bbox_data: Dict, outer_bbox_data: Dict, tolerance: float = 5.0) -> bool: """ 檢查 'inner_bbox' 是否在 'outer_bbox' 內部(帶有容錯)。 此版本可處理多邊形和矩形。 """ inner_coords = self._get_bbox_coords(inner_bbox_data.get('bbox')) outer_coords = self._get_bbox_coords(outer_bbox_data.get('bbox')) if not inner_coords or not outer_coords: return False inner_x1, inner_y1, inner_x2, inner_y2 = inner_coords outer_x1, outer_y1, outer_x2, outer_y2 = outer_coords # 檢查 inner 是否在 outer 內部 (加入 tolerance) is_inside = ( (inner_x1 >= outer_x1 - tolerance) and (inner_y1 >= outer_y1 - tolerance) and (inner_x2 <= outer_x2 + tolerance) and (inner_y2 <= outer_y2 + tolerance) ) return is_inside def _bbox_overlaps(self, bbox1_data: Dict, bbox2_data: Dict, tolerance: float = 5.0) -> bool: """ 檢查兩個 bbox 是否有重疊(帶有容錯)。 如果有任何重疊,返回 True。 Args: bbox1_data: 第一個 bbox 數據 bbox2_data: 第二個 bbox 數據 tolerance: 容錯值(像素) Returns: True 如果兩個 bbox 有重疊 """ coords1 = self._get_bbox_coords(bbox1_data.get('bbox')) coords2 = self._get_bbox_coords(bbox2_data.get('bbox')) if not coords1 or not coords2: return False x1_min, y1_min, x1_max, y1_max = coords1 x2_min, y2_min, x2_max, y2_max = coords2 # 擴展 bbox2(表格/圖片區域)的範圍 x2_min -= tolerance y2_min -= tolerance x2_max += tolerance y2_max += tolerance # 檢查是否有重疊:如果沒有重疊,則必定滿足以下條件之一 no_overlap = ( x1_max < x2_min or # bbox1 在 bbox2 左側 x1_min > x2_max or # bbox1 在 bbox2 右側 y1_max < y2_min or # bbox1 在 bbox2 上方 y1_min > y2_max # bbox1 在 bbox2 下方 ) return not no_overlap def _calculate_overlap_ratio(self, text_bbox_data: Dict, avoid_bbox_data: Dict) -> float: """ 計算文字區域與避免區域的重疊比例。 Args: text_bbox_data: 文字區域 bbox 數據 avoid_bbox_data: 避免區域 bbox 數據 Returns: 重疊面積佔文字區域面積的比例 (0.0 - 1.0) """ text_coords = self._get_bbox_coords(text_bbox_data.get('bbox')) avoid_coords = self._get_bbox_coords(avoid_bbox_data.get('bbox')) if not text_coords or not avoid_coords: return 0.0 tx0, ty0, tx1, ty1 = text_coords ax0, ay0, ax1, ay1 = avoid_coords # Calculate text area text_area = (tx1 - tx0) * (ty1 - ty0) if text_area <= 0: return 0.0 # Calculate intersection inter_x0 = max(tx0, ax0) inter_y0 = max(ty0, ay0) inter_x1 = min(tx1, ax1) inter_y1 = min(ty1, ay1) # Check if there's actual intersection if inter_x1 <= inter_x0 or inter_y1 <= inter_y0: return 0.0 inter_area = (inter_x1 - inter_x0) * (inter_y1 - inter_y0) return inter_area / text_area def _filter_text_in_regions(self, text_regions: List[Dict], regions_to_avoid: List[Dict], overlap_threshold: float = 0.5) -> List[Dict]: """ 過濾掉與 'regions_to_avoid'(例如表格、圖片)顯著重疊的文字區域。 使用重疊比例閾值來判斷是否過濾,避免過濾掉僅相鄰但不重疊的文字。 Args: text_regions: 文字區域列表 regions_to_avoid: 需要避免的區域列表(表格、圖片) overlap_threshold: 重疊比例閾值 (0.0-1.0),只有當文字區域 與避免區域的重疊比例超過此閾值時才會被過濾 預設 0.5 表示超過 50% 重疊才過濾 Returns: 過濾後的文字區域列表 """ filtered_text = [] filtered_count = 0 for text_region in text_regions: should_filter = False max_overlap = 0.0 for avoid_region in regions_to_avoid: # 計算重疊比例 overlap_ratio = self._calculate_overlap_ratio(text_region, avoid_region) max_overlap = max(max_overlap, overlap_ratio) # 只有當重疊比例超過閾值時才過濾 if overlap_ratio > overlap_threshold: should_filter = True filtered_count += 1 logger.debug(f"過濾掉重疊文字 (重疊比例: {overlap_ratio:.1%}): {text_region.get('text', '')[:30]}...") break if not should_filter: filtered_text.append(text_region) if max_overlap > 0: logger.debug(f"保留文字 (最大重疊比例: {max_overlap:.1%}): {text_region.get('text', '')[:30]}...") logger.info(f"原始文字區域: {len(text_regions)}, 過濾後: {len(filtered_text)}, 移除: {filtered_count}") return filtered_text def draw_text_region( self, pdf_canvas: canvas.Canvas, region: Dict, page_height: float, scale_w: float = 1.0, scale_h: float = 1.0 ): """ Draw a text region at precise coordinates Args: pdf_canvas: ReportLab canvas object region: Text region dict with text, bbox, confidence page_height: Height of page (for coordinate transformation) scale_w: Scale factor for X coordinates (PDF width / OCR width) scale_h: Scale factor for Y coordinates (PDF height / OCR height) """ text = region.get('text', '') bbox = region.get('bbox', []) confidence = region.get('confidence', 1.0) if not text or not bbox: return try: # Handle different bbox formats if isinstance(bbox, dict): # Dict format from UnifiedDocument: {"x0": ..., "y0": ..., "x1": ..., "y1": ...} if 'x0' in bbox and 'y0' in bbox and 'x1' in bbox and 'y1' in bbox: ocr_x_left = float(bbox['x0']) ocr_y_top = float(bbox['y0']) ocr_x_right = float(bbox['x1']) ocr_y_bottom = float(bbox['y1']) else: logger.warning(f"Dict bbox missing required keys: {bbox}") return elif isinstance(bbox, list): if len(bbox) < 4: return # Polygon format [[x,y], [x,y], [x,y], [x,y]] (4 points) if isinstance(bbox[0], list): ocr_x_left = bbox[0][0] # Left X ocr_y_top = bbox[0][1] # Top Y in OCR coordinates ocr_x_right = bbox[2][0] # Right X ocr_y_bottom = bbox[2][1] # Bottom Y in OCR coordinates # Simple list format [x0, y0, x1, y1] elif isinstance(bbox[0], (int, float)): ocr_x_left = bbox[0] ocr_y_top = bbox[1] ocr_x_right = bbox[2] ocr_y_bottom = bbox[3] else: logger.warning(f"Unexpected bbox list format: {bbox}") return else: logger.warning(f"Invalid bbox format: {bbox}") return logger.info(f"[文字] '{text[:20]}...' OCR原始座標: L={ocr_x_left:.0f}, T={ocr_y_top:.0f}, R={ocr_x_right:.0f}, B={ocr_y_bottom:.0f}") # Apply scale factors to convert from OCR space to PDF space scaled_x_left = ocr_x_left * scale_w scaled_y_top = ocr_y_top * scale_h scaled_x_right = ocr_x_right * scale_w scaled_y_bottom = ocr_y_bottom * scale_h logger.info(f"[文字] '{text[:20]}...' 縮放後(scale={scale_w:.3f},{scale_h:.3f}): L={scaled_x_left:.1f}, T={scaled_y_top:.1f}, R={scaled_x_right:.1f}, B={scaled_y_bottom:.1f}") # Calculate bbox dimensions (after scaling) bbox_width = abs(scaled_x_right - scaled_x_left) bbox_height = abs(scaled_y_bottom - scaled_y_top) # Calculate font size using heuristics # For multi-line text, divide bbox height by number of lines lines = text.split('\n') non_empty_lines = [l for l in lines if l.strip()] num_lines = max(len(non_empty_lines), 1) # Font size = bbox_height / num_lines * factor # Use 0.8 factor to leave room for line spacing font_size = (bbox_height / num_lines) * 0.8 font_size = max(min(font_size, 72), 4) # Clamp between 4pt and 72pt logger.debug(f"Text has {num_lines} non-empty lines, bbox_height={bbox_height:.1f}, calculated font_size={font_size:.1f}") # Transform coordinates: OCR (top-left origin) → PDF (bottom-left origin) # CRITICAL: Y-axis flip! # For multi-line text, start from TOP of bbox and go downward pdf_x = scaled_x_left pdf_y_top = page_height - scaled_y_top # Top of bbox in PDF coordinates # Adjust for font baseline: first line starts below the top edge pdf_y = pdf_y_top - font_size # Start first line one font size below top logger.info(f"[文字] '{text[:30]}' → PDF位置: ({pdf_x:.1f}, {pdf_y:.1f}), 字體:{font_size:.1f}pt, 寬x高:{bbox_width:.0f}x{bbox_height:.0f}, 行數:{num_lines}") # Set font with track-specific styling # Note: OCR track has no StyleInfo (extracted from images), so no advanced formatting style_info = region.get('style') is_direct_track = (self.current_processing_track == ProcessingTrack.DIRECT or self.current_processing_track == ProcessingTrack.HYBRID) if style_info and is_direct_track: # Direct track: Apply rich styling from StyleInfo self._apply_text_style(pdf_canvas, style_info, default_size=font_size) # Get current font for width calculation font_name = pdf_canvas._fontname font_size = pdf_canvas._fontsize logger.debug(f"Applied Direct track style: font={font_name}, size={font_size}") else: # OCR track or no style: Use simple font selection font_name = self.font_name if self.font_registered else 'Helvetica' pdf_canvas.setFont(font_name, font_size) # Handle line breaks (split text by newlines) # OCR track: simple left-aligned rendering # Note: non_empty_lines was already calculated above for font sizing line_height = font_size * 1.2 # 120% of font size for line spacing # Draw each non-empty line (using proper line index for positioning) for i, line in enumerate(non_empty_lines): line_y = pdf_y - (i * line_height) # Calculate text width to prevent overflow text_width = pdf_canvas.stringWidth(line, font_name, font_size) # If text is too wide for bbox, scale down font for this line current_font_size = font_size if text_width > bbox_width: scale_factor = bbox_width / text_width current_font_size = font_size * scale_factor * 0.95 # 95% to add small margin current_font_size = max(current_font_size, 3) # Minimum 3pt pdf_canvas.setFont(font_name, current_font_size) # Draw text at left-aligned position (OCR track uses simple left alignment) pdf_canvas.drawString(pdf_x, line_y, line) # Reset font size for next line if text_width > bbox_width: pdf_canvas.setFont(font_name, font_size) # Debug: Draw bounding box (optional) if settings.pdf_enable_bbox_debug: pdf_canvas.setStrokeColorRGB(1, 0, 0, 0.3) # Red, semi-transparent pdf_canvas.setLineWidth(0.5) # Use already-extracted coordinates (works for all bbox formats) # Draw rectangle using the scaled coordinates pdf_x1 = ocr_x_left * scale_w pdf_y1 = page_height - ocr_y_top * scale_h pdf_x2 = ocr_x_right * scale_w pdf_y2 = page_height - ocr_y_bottom * scale_h # Draw bbox rectangle pdf_canvas.line(pdf_x1, pdf_y1, pdf_x2, pdf_y1) # top pdf_canvas.line(pdf_x2, pdf_y1, pdf_x2, pdf_y2) # right pdf_canvas.line(pdf_x2, pdf_y2, pdf_x1, pdf_y2) # bottom pdf_canvas.line(pdf_x1, pdf_y2, pdf_x1, pdf_y1) # left except Exception as e: logger.warning(f"Failed to draw text region '{text[:20]}...': {e}") def draw_table_region( self, pdf_canvas: canvas.Canvas, table_element: Dict, images_metadata: List[Dict], page_height: float, scale_w: float = 1.0, scale_h: float = 1.0 ): """ Draw a table region by parsing HTML and rebuilding with ReportLab Table Args: pdf_canvas: ReportLab canvas object table_element: Table element dict with HTML content images_metadata: List of image metadata to find table bbox page_height: Height of page scale_w: Scale factor for X coordinates (PDF width / OCR width) scale_h: Scale factor for Y coordinates (PDF height / OCR height) """ try: html_content = table_element.get('content', '') if not html_content: return # Parse HTML to extract table structure parser = HTMLTableParser() parser.feed(html_content) if not parser.tables: logger.warning("No tables found in HTML content") return # Get the first table (PP-StructureV3 usually provides one table per element) table_data = parser.tables[0] rows = table_data['rows'] if not rows: return # Get bbox directly from table element table_bbox = table_element.get('bbox') # If no bbox directly, check for bbox_polygon if not table_bbox: bbox_polygon = table_element.get('bbox_polygon') if bbox_polygon and len(bbox_polygon) >= 4: # Convert polygon format to simple bbox [x0, y0, x1, y1] table_bbox = [ bbox_polygon[0][0], # x0 bbox_polygon[0][1], # y0 bbox_polygon[2][0], # x1 bbox_polygon[2][1] # y1 ] if not table_bbox: logger.warning(f"No bbox found for table element") return # Handle different bbox formats if isinstance(table_bbox, dict): # Dict format from UnifiedDocument: {"x0": ..., "y0": ..., "x1": ..., "y1": ...} if 'x0' in table_bbox and 'y0' in table_bbox and 'x1' in table_bbox and 'y1' in table_bbox: ocr_x_left_raw = float(table_bbox['x0']) ocr_y_top_raw = float(table_bbox['y0']) ocr_x_right_raw = float(table_bbox['x1']) ocr_y_bottom_raw = float(table_bbox['y1']) else: logger.error(f"Dict bbox missing required keys (x0, y0, x1, y1): {table_bbox}") return elif isinstance(table_bbox, list) and len(table_bbox) == 4: # Simple bbox format [x0, y0, x1, y1] if isinstance(table_bbox[0], (int, float)): ocr_x_left_raw = table_bbox[0] ocr_y_top_raw = table_bbox[1] ocr_x_right_raw = table_bbox[2] ocr_y_bottom_raw = table_bbox[3] # Polygon format [[x,y], [x,y], [x,y], [x,y]] elif isinstance(table_bbox[0], list): ocr_x_left_raw = table_bbox[0][0] ocr_y_top_raw = table_bbox[0][1] ocr_x_right_raw = table_bbox[2][0] ocr_y_bottom_raw = table_bbox[2][1] else: logger.error(f"Unexpected bbox format: {table_bbox}") return else: logger.error(f"Invalid table_bbox format: {table_bbox}") return logger.info(f"[表格] OCR原始座標: L={ocr_x_left_raw:.0f}, T={ocr_y_top_raw:.0f}, R={ocr_x_right_raw:.0f}, B={ocr_y_bottom_raw:.0f}") # Apply scaling ocr_x_left = ocr_x_left_raw * scale_w ocr_y_top = ocr_y_top_raw * scale_h ocr_x_right = ocr_x_right_raw * scale_w ocr_y_bottom = ocr_y_bottom_raw * scale_h table_width = abs(ocr_x_right - ocr_x_left) table_height = abs(ocr_y_bottom - ocr_y_top) # Transform coordinates pdf_x = ocr_x_left pdf_y = page_height - ocr_y_bottom # Build table data for ReportLab with proper colspan/rowspan handling # First pass: determine the actual grid size by accounting for spans num_rows = len(rows) # Calculate actual number of columns by checking first row's total span max_cols = 0 for row in rows: row_cols = sum(cell.get('colspan', 1) for cell in row['cells']) max_cols = max(max_cols, row_cols) logger.info(f"[表格] {num_rows}行x{max_cols}列 → PDF位置: ({pdf_x:.1f}, {pdf_y:.1f}), 寬x高: {table_width:.0f}x{table_height:.0f}") # Create a grid to track occupied cells (for rowspan handling) # occupied[row][col] = True if cell is occupied by a span from above occupied = [[False] * max_cols for _ in range(num_rows)] # Build the 2D data array and collect span commands reportlab_data = [] span_commands = [] for row_idx, row in enumerate(rows): row_data = [''] * max_cols col_idx = 0 for cell in row['cells']: # Skip occupied cells (from rowspan above) while col_idx < max_cols and occupied[row_idx][col_idx]: col_idx += 1 if col_idx >= max_cols: break text = cell['text'].strip() colspan = cell.get('colspan', 1) rowspan = cell.get('rowspan', 1) # Place text in the top-left cell of the span row_data[col_idx] = text # Mark cells as occupied for rowspan for r in range(row_idx, min(row_idx + rowspan, num_rows)): for c in range(col_idx, min(col_idx + colspan, max_cols)): if r > row_idx or c > col_idx: occupied[r][c] = True # Add SPAN command if cell spans multiple rows/cols if colspan > 1 or rowspan > 1: span_end_col = min(col_idx + colspan - 1, max_cols - 1) span_end_row = min(row_idx + rowspan - 1, num_rows - 1) span_commands.append(('SPAN', (col_idx, row_idx), (span_end_col, span_end_row))) col_idx += colspan reportlab_data.append(row_data) # Calculate column widths (equal distribution) col_widths = [table_width / max_cols] * max_cols # Create ReportLab Table # Use smaller font to fit content with auto-wrap font_size = 8 # Fixed reasonable font size for table content # Create paragraph style for text wrapping in cells cell_style = ParagraphStyle( 'CellStyle', fontName=self.font_name if self.font_registered else 'Helvetica', fontSize=font_size, leading=font_size * 1.2, alignment=TA_CENTER, wordWrap='CJK', # Better wrapping for Chinese text ) # Convert text to Paragraph objects for auto-wrapping for row_idx, row_data in enumerate(reportlab_data): for col_idx, cell_text in enumerate(row_data): if cell_text: # Escape HTML special characters and create Paragraph escaped_text = cell_text.replace('&', '&').replace('<', '<').replace('>', '>') reportlab_data[row_idx][col_idx] = Paragraph(escaped_text, cell_style) # Create table WITHOUT fixed row heights - let it auto-size based on content table = Table(reportlab_data, colWidths=col_widths) # Apply table style style = TableStyle([ ('FONT', (0, 0), (-1, -1), self.font_name if self.font_registered else 'Helvetica', font_size), ('GRID', (0, 0), (-1, -1), 0.5, colors.black), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ('ALIGN', (0, 0), (-1, -1), 'CENTER'), ('LEFTPADDING', (0, 0), (-1, -1), 2), ('RIGHTPADDING', (0, 0), (-1, -1), 2), ('TOPPADDING', (0, 0), (-1, -1), 2), ('BOTTOMPADDING', (0, 0), (-1, -1), 2), ]) # Add header style if first row has headers if rows and rows[0]['cells'] and rows[0]['cells'][0].get('is_header'): style.add('BACKGROUND', (0, 0), (-1, 0), colors.lightgrey) style.add('FONT', (0, 0), (-1, 0), self.font_name if self.font_registered else 'Helvetica-Bold', font_size) # Add span commands for merged cells for span_cmd in span_commands: style.add(*span_cmd) table.setStyle(style) logger.info(f"[表格] 套用 {len(span_commands)} 個合併儲存格 (SPAN)") # Calculate actual table size after wrapping actual_width, actual_height = table.wrapOn(pdf_canvas, table_width, table_height) logger.info(f"[表格] 目標尺寸: {table_width:.0f}x{table_height:.0f}, 實際尺寸: {actual_width:.0f}x{actual_height:.0f}") # Scale table to fit bbox if it exceeds the target size scale_x = table_width / actual_width if actual_width > table_width else 1.0 scale_y = table_height / actual_height if actual_height > table_height else 1.0 scale_factor = min(scale_x, scale_y) # Use smaller scale to fit both dimensions if scale_factor < 1.0: logger.info(f"[表格] 縮放比例: {scale_factor:.2f} (需要縮小以適應 bbox)") # Apply scaling transformation pdf_canvas.saveState() pdf_canvas.translate(pdf_x, pdf_y) pdf_canvas.scale(scale_factor, scale_factor) # Draw at origin since we've already translated table.drawOn(pdf_canvas, 0, 0) pdf_canvas.restoreState() else: # Draw table at position without scaling table.drawOn(pdf_canvas, pdf_x, pdf_y) logger.info(f"Drew table at ({pdf_x:.0f}, {pdf_y:.0f}) size {table_width:.0f}x{table_height:.0f} with {len(rows)} rows") except Exception as e: logger.warning(f"Failed to draw table region: {e}") import traceback traceback.print_exc() def draw_image_region( self, pdf_canvas: canvas.Canvas, region: Dict, page_height: float, result_dir: Path, scale_w: float = 1.0, scale_h: float = 1.0 ): """ Draw an image region by embedding the extracted image Handles images extracted by PP-StructureV3 (tables, figures, charts, etc.) Args: pdf_canvas: ReportLab canvas object region: Image metadata dict with image_path and bbox page_height: Height of page (for coordinate transformation) result_dir: Directory containing result files scale_w: Scale factor for X coordinates (PDF width / OCR width) scale_h: Scale factor for Y coordinates (PDF height / OCR height) """ try: image_path_str = region.get('image_path', '') if not image_path_str: return # Construct full path to image # saved_path is relative to result_dir (e.g., "imgs/element_id.png") image_path = result_dir / image_path_str # Fallback for legacy data if not image_path.exists(): image_path = result_dir / Path(image_path_str).name if not image_path.exists(): logger.warning(f"Image not found: {image_path_str} (in {result_dir})") return # Get bbox for positioning bbox = region.get('bbox', []) if not bbox: logger.warning(f"No bbox for image {image_path_str}") return # Handle different bbox formats if isinstance(bbox, dict): # Dict format from UnifiedDocument: {"x0": ..., "y0": ..., "x1": ..., "y1": ...} if 'x0' in bbox and 'y0' in bbox and 'x1' in bbox and 'y1' in bbox: ocr_x_left_raw = float(bbox['x0']) ocr_y_top_raw = float(bbox['y0']) ocr_x_right_raw = float(bbox['x1']) ocr_y_bottom_raw = float(bbox['y1']) else: logger.warning(f"Dict bbox missing required keys for image: {bbox}") return elif isinstance(bbox, list): if len(bbox) < 4: logger.warning(f"List bbox too short for image: {bbox}") return # Polygon format [[x,y], [x,y], [x,y], [x,y]] if isinstance(bbox[0], list): ocr_x_left_raw = bbox[0][0] ocr_y_top_raw = bbox[0][1] ocr_x_right_raw = bbox[2][0] ocr_y_bottom_raw = bbox[2][1] # Simple list format [x0, y0, x1, y1] elif isinstance(bbox[0], (int, float)): ocr_x_left_raw = bbox[0] ocr_y_top_raw = bbox[1] ocr_x_right_raw = bbox[2] ocr_y_bottom_raw = bbox[3] else: logger.warning(f"Unexpected bbox list format for image: {bbox}") return else: logger.warning(f"Invalid bbox format for image: {bbox}") return logger.info(f"[圖片] '{image_path_str}' OCR原始座標: L={ocr_x_left_raw:.0f}, T={ocr_y_top_raw:.0f}, R={ocr_x_right_raw:.0f}, B={ocr_y_bottom_raw:.0f}") # Apply scaling ocr_x_left = ocr_x_left_raw * scale_w ocr_y_top = ocr_y_top_raw * scale_h ocr_x_right = ocr_x_right_raw * scale_w ocr_y_bottom = ocr_y_bottom_raw * scale_h # Calculate bbox dimensions (after scaling) bbox_width = abs(ocr_x_right - ocr_x_left) bbox_height = abs(ocr_y_bottom - ocr_y_top) # Transform coordinates: OCR (top-left origin) → PDF (bottom-left origin) # CRITICAL: Y-axis flip! # For images, we position at bottom-left corner pdf_x_left = ocr_x_left pdf_y_bottom = page_height - ocr_y_bottom # Flip Y-axis logger.info(f"[圖片] '{image_path_str}' → PDF位置: ({pdf_x_left:.1f}, {pdf_y_bottom:.1f}), 寬x高: {bbox_width:.0f}x{bbox_height:.0f}") # Draw image using ReportLab # drawImage expects: (path, x, y, width, height) # where (x, y) is the bottom-left corner of the image pdf_canvas.drawImage( str(image_path), pdf_x_left, pdf_y_bottom, width=bbox_width, height=bbox_height, preserveAspectRatio=True, mask='auto' # Handle transparency ) logger.info(f"[圖片] ✓ 成功繪製 '{image_path_str}'") except Exception as e: logger.warning(f"Failed to draw image region: {e}") def generate_layout_pdf( self, json_path: Path, output_path: Path, source_file_path: Optional[Path] = None ) -> bool: """ Generate layout-preserving PDF from OCR JSON data Args: json_path: Path to OCR JSON file output_path: Path to save generated PDF source_file_path: Optional path to original source file for dimension extraction Returns: True if successful, False otherwise """ try: # Load JSON data ocr_data = self.load_ocr_json(json_path) if not ocr_data: return False # Check if this is new UnifiedDocument format (has 'pages' with elements) # vs old OCR format (has 'text_regions') if 'pages' in ocr_data and isinstance(ocr_data.get('pages'), list): # New UnifiedDocument format - convert and use Direct track rendering logger.info("Detected UnifiedDocument JSON format, using Direct track rendering") unified_doc = self._json_to_unified_document(ocr_data, json_path.parent) if unified_doc: return self.generate_from_unified_document( unified_doc=unified_doc, output_path=output_path, source_file_path=source_file_path ) else: logger.error("Failed to convert JSON to UnifiedDocument") return False else: # Old OCR format - use legacy generation logger.info("Detected legacy OCR JSON format, using OCR track rendering") return self._generate_pdf_from_data( ocr_data=ocr_data, output_path=output_path, source_file_path=source_file_path, json_parent_dir=json_path.parent ) except Exception as e: logger.error(f"Failed to generate PDF: {e}") import traceback traceback.print_exc() return False def _json_to_unified_document(self, json_data: Dict, result_dir: Path) -> Optional['UnifiedDocument']: """ Convert JSON dict to UnifiedDocument object. Args: json_data: Loaded JSON dictionary in UnifiedDocument format result_dir: Directory containing image files Returns: UnifiedDocument object or None if conversion fails """ try: from datetime import datetime # Parse metadata metadata_dict = json_data.get('metadata', {}) # Parse processing track track_str = metadata_dict.get('processing_track', 'direct') try: processing_track = ProcessingTrack(track_str) except ValueError: processing_track = ProcessingTrack.DIRECT # Create DocumentMetadata metadata = DocumentMetadata( filename=metadata_dict.get('filename', ''), file_type=metadata_dict.get('file_type', 'pdf'), file_size=metadata_dict.get('file_size', 0), created_at=datetime.fromisoformat(metadata_dict.get('created_at', datetime.now().isoformat()).replace('Z', '+00:00')), processing_track=processing_track, processing_time=metadata_dict.get('processing_time', 0), language=metadata_dict.get('language'), title=metadata_dict.get('title'), author=metadata_dict.get('author'), subject=metadata_dict.get('subject'), keywords=metadata_dict.get('keywords'), producer=metadata_dict.get('producer'), creator=metadata_dict.get('creator'), creation_date=datetime.fromisoformat(metadata_dict['creation_date'].replace('Z', '+00:00')) if metadata_dict.get('creation_date') else None, modification_date=datetime.fromisoformat(metadata_dict['modification_date'].replace('Z', '+00:00')) if metadata_dict.get('modification_date') else None, ) # Parse pages pages = [] for page_dict in json_data.get('pages', []): # Parse page dimensions dims = page_dict.get('dimensions', {}) if not dims: # Fallback dimensions dims = {'width': 595.32, 'height': 841.92} dimensions = Dimensions( width=dims.get('width', 595.32), height=dims.get('height', 841.92), dpi=dims.get('dpi') ) # Parse elements elements = [] for elem_dict in page_dict.get('elements', []): element = self._json_to_document_element(elem_dict) if element: elements.append(element) page = Page( page_number=page_dict.get('page_number', 1), dimensions=dimensions, elements=elements, metadata=page_dict.get('metadata', {}) ) pages.append(page) # Create UnifiedDocument unified_doc = UnifiedDocument( document_id=json_data.get('document_id', ''), metadata=metadata, pages=pages, processing_errors=json_data.get('processing_errors', []) ) logger.info(f"Converted JSON to UnifiedDocument: {len(pages)} pages, track={processing_track.value}") return unified_doc except Exception as e: logger.error(f"Failed to convert JSON to UnifiedDocument: {e}") import traceback traceback.print_exc() return None def _json_to_document_element(self, elem_dict: Dict) -> Optional['DocumentElement']: """ Convert JSON dict to DocumentElement. Args: elem_dict: Element dictionary from JSON Returns: DocumentElement or None if conversion fails """ try: # Parse element type type_str = elem_dict.get('type', 'text') try: elem_type = ElementType(type_str) except ValueError: # Fallback to TEXT for unknown types elem_type = ElementType.TEXT logger.warning(f"Unknown element type '{type_str}', falling back to TEXT") # Content-based HTML table detection: reclassify text elements with HTML table content content = elem_dict.get('content', '') if elem_type == ElementType.TEXT and isinstance(content, str) and ' bool: """ Fallback detection for list items not marked with ElementType.LIST_ITEM. Checks metadata and text patterns to identify list items. Args: element: Document element to check Returns: True if element appears to be a list item """ # Skip if already categorized as table or image if element.type in [ElementType.TABLE, ElementType.IMAGE, ElementType.FIGURE, ElementType.CHART, ElementType.DIAGRAM]: return False # Check metadata for list-related fields if element.metadata: # Check for list_level metadata if 'list_level' in element.metadata: return True # Check for parent_item (indicates list hierarchy) if 'parent_item' in element.metadata: return True # Check for children (could be parent list item) if 'children' in element.metadata and element.metadata['children']: return True # Check text content for list patterns if element.is_text: text = element.get_text().lstrip() # Ordered list pattern: starts with number followed by . or ) if re.match(r'^\d+[\.\)]\s', text): return True # Unordered list pattern: starts with bullet character if re.match(r'^[•·▪▫◦‣⁃\-\*]\s', text): return True return False def _draw_list_elements_direct( self, pdf_canvas: canvas.Canvas, list_elements: List['DocumentElement'], page_height: float ): """ Draw list elements with proper sequential numbering and formatting. This method processes all list items on a page, groups them into lists, and assigns proper sequential numbering to ordered lists. Args: pdf_canvas: ReportLab canvas object list_elements: List of LIST_ITEM elements page_height: Page height for coordinate transformation """ if not list_elements: return # Sort list items by position (top to bottom, left to right) sorted_items = sorted(list_elements, key=lambda e: (e.bbox.y0, e.bbox.x0)) # Group list items into lists based on proximity and level list_groups = [] current_group = [] prev_y = None prev_level = None max_gap = 30 # Maximum vertical gap between items in same list (in points) for item in sorted_items: level = item.metadata.get('list_level', 0) if item.metadata else 0 y_pos = item.bbox.y0 # Check if this item belongs to current group if current_group and prev_y is not None: gap = abs(y_pos - prev_y) # Start new group if gap is too large or level changed significantly if gap > max_gap or (prev_level is not None and level != prev_level): list_groups.append(current_group) current_group = [] current_group.append(item) prev_y = y_pos prev_level = level if current_group: list_groups.append(current_group) # Process each list group for group in list_groups: # Detect list type from first item first_item = group[0] text_content = first_item.get_text() text_stripped = text_content.lstrip() list_type = None list_counter = 1 # Determine list type if re.match(r'^\d+[\.\)]\s', text_stripped): list_type = 'ordered' # Extract starting number match = re.match(r'^(\d+)[\.\)]\s', text_stripped) if match: list_counter = int(match.group(1)) elif re.match(r'^[•·▪▫◦‣⁃]\s', text_stripped): list_type = 'unordered' # Draw each item in the group with proper spacing # Track cumulative Y offset to apply spacing_after between items cumulative_y_offset = 0 for item_idx, item in enumerate(group): # Prepare list marker based on type if list_type == 'ordered': list_marker = f"{list_counter}. " list_counter += 1 elif list_type == 'unordered': list_marker = "• " else: list_marker = "" # No marker if type unknown # Store list marker in item metadata for _draw_text_element_direct if not item.metadata: item.metadata = {} item.metadata['_list_marker'] = list_marker item.metadata['_list_type'] = list_type # Add default list item spacing if not specified # This ensures consistent spacing between list items desired_spacing_after = item.metadata.get('spacing_after', 0) if desired_spacing_after == 0: # Default list item spacing: 3 points between items (except last item) if item_idx < len(group) - 1: desired_spacing_after = 3.0 item.metadata['spacing_after'] = desired_spacing_after # Draw the list item with cumulative Y offset self._draw_text_element_direct(pdf_canvas, item, page_height, y_offset=cumulative_y_offset) # Calculate spacing to add after this item if item_idx < len(group) - 1 and desired_spacing_after > 0: next_item = group[item_idx + 1] # Calculate actual vertical gap between items (in document coordinates) # Note: Y increases downward in document coordinates actual_gap = next_item.bbox.y0 - item.bbox.y1 # If actual gap is less than desired spacing, add offset to push next item down if actual_gap < desired_spacing_after: additional_spacing = desired_spacing_after - actual_gap cumulative_y_offset -= additional_spacing # Negative because PDF Y increases upward logger.debug(f"Adding {additional_spacing:.1f}pt spacing after list item {item.element_id} " f"(actual_gap={actual_gap:.1f}pt, desired={desired_spacing_after:.1f}pt)") def _draw_text_with_spans( self, pdf_canvas: canvas.Canvas, spans: List['DocumentElement'], line_x: float, line_y: float, default_font_size: float, max_width: float = None ) -> float: """ Draw text with inline span styling (mixed styles within a line). Args: pdf_canvas: ReportLab canvas object spans: List of span DocumentElements line_x: Starting X position line_y: Y position default_font_size: Default font size if span has none max_width: Maximum width available (for scaling if needed) Returns: Total width of drawn text """ if not spans: return 0 # First pass: calculate total width with original sizes total_width = 0 span_data = [] # Store (span, text, font, size) for rendering for span in spans: span_text = span.get_text() if not span_text: continue # Apply span-specific styling to get font and size if span.style: self._apply_text_style(pdf_canvas, span.style, default_size=default_font_size) else: font_name = self.font_name if self.font_registered else 'Helvetica' pdf_canvas.setFont(font_name, default_font_size) current_font = pdf_canvas._fontname current_size = pdf_canvas._fontsize # Calculate span width span_width = pdf_canvas.stringWidth(span_text, current_font, current_size) total_width += span_width span_data.append((span, span_text, current_font, current_size, span_width)) # Calculate scale factor if needed scale_factor = 1.0 if max_width and total_width > max_width: scale_factor = (max_width / total_width) * 0.95 # 95% to leave margin logger.debug(f"Scaling spans: total_width={total_width:.1f}pt > max_width={max_width:.1f}pt, scale={scale_factor:.2f}") # Second pass: draw spans with scaling x_pos = line_x for span, span_text, font_name, original_size, span_width in span_data: # Apply scaled font size scaled_size = original_size * scale_factor scaled_size = max(scaled_size, 3) # Minimum 3pt # Set font with scaled size pdf_canvas.setFont(font_name, scaled_size) # Draw this span pdf_canvas.drawString(x_pos, line_y, span_text) # Calculate actual width with scaled size and advance position actual_width = pdf_canvas.stringWidth(span_text, font_name, scaled_size) x_pos += actual_width return total_width * scale_factor def _draw_text_element_direct( self, pdf_canvas: canvas.Canvas, element: 'DocumentElement', page_height: float, y_offset: float = 0 ): """ Draw text element with Direct track rich formatting. FIXED: Correctly handles multi-line blocks and spans coordinates. Prioritizes span-based rendering (using precise bbox from each span), falls back to block-level rendering with corrected Y-axis logic. Args: pdf_canvas: ReportLab canvas object element: DocumentElement with text content page_height: Page height for coordinate transformation y_offset: Optional Y coordinate offset (for list spacing), in PDF coordinates """ try: text_content = element.get_text() if not text_content: return # Get bounding box bbox = element.bbox if not bbox: logger.warning(f"No bbox for text element {element.element_id}") return bbox_width = bbox.x1 - bbox.x0 bbox_height = bbox.y1 - bbox.y0 # --- FIX 1: Prioritize Span-based Drawing (Precise Layout) --- # DirectExtractionEngine provides children (spans) with precise bboxes. # Using these preserves exact layout, kerning, and multi-column positioning. if element.children and len(element.children) > 0: for span in element.children: span_text = span.get_text() if not span_text: continue # Use span's own bbox for positioning s_bbox = span.bbox if not s_bbox: continue # Calculate font size from span style or bbox s_font_size = 10 # default if span.style and span.style.font_size: s_font_size = span.style.font_size else: # Estimate from bbox height s_font_size = (s_bbox.y1 - s_bbox.y0) * 0.75 s_font_size = max(min(s_font_size, 72), 4) # Apply span style if span.style: self._apply_text_style(pdf_canvas, span.style, default_size=s_font_size) else: font_name = self.font_name if self.font_registered else 'Helvetica' pdf_canvas.setFont(font_name, s_font_size) # Transform coordinates # PyMuPDF y1 is bottom of text box. ReportLab draws at baseline. # Using y1 with a small offset (20% of font size) approximates baseline position. span_pdf_x = s_bbox.x0 span_pdf_y = page_height - s_bbox.y1 + (s_font_size * 0.2) pdf_canvas.drawString(span_pdf_x, span_pdf_y + y_offset, span_text) # If we drew spans, we are done. Do not draw the block text on top. logger.debug(f"Drew {len(element.children)} spans using precise bbox positioning") return # --- FIX 2: Block-level Fallback (Corrected Y-Axis Logic) --- # Used when no spans are available (e.g. filtered text or modified structures) # Calculate font size from bbox height font_size = bbox_height * 0.75 font_size = max(min(font_size, 72), 4) # Clamp 4-72pt # Apply style if available alignment = 'left' # Default alignment if hasattr(element, 'style') and element.style: self._apply_text_style(pdf_canvas, element.style, default_size=font_size) # Get alignment from style if hasattr(element.style, 'alignment') and element.style.alignment: alignment = element.style.alignment else: # Use default font font_name = self.font_name if self.font_registered else 'Helvetica' pdf_canvas.setFont(font_name, font_size) # Detect list items and extract list properties is_list_item = (element.type == ElementType.LIST_ITEM) list_level = element.metadata.get('list_level', 0) if element.metadata else 0 # Get pre-computed list marker from metadata (set by _draw_list_elements_direct) list_marker = element.metadata.get('_list_marker', '') if element.metadata else '' list_type = element.metadata.get('_list_type') if element.metadata else None # If no pre-computed marker, remove original marker from text if is_list_item and list_marker: # Remove original marker from text content text_stripped = text_content.lstrip() # Remove ordered list marker text_content = re.sub(r'^\d+[\.\)]\s', '', text_stripped) # Remove unordered list marker text_content = re.sub(r'^[•·▪▫◦‣⁃]\s', '', text_content) # Get indentation from metadata (in points) indent = element.metadata.get('indent', 0) if element.metadata else 0 first_line_indent = element.metadata.get('first_line_indent', indent) if element.metadata else indent # Apply list indentation (20pt per level) if is_list_item: list_indent = list_level * 20 # 20pt per level indent += list_indent first_line_indent += list_indent # Get paragraph spacing paragraph_spacing_before = element.metadata.get('spacing_before', 0) if element.metadata else 0 paragraph_spacing_after = element.metadata.get('spacing_after', 0) if element.metadata else 0 # --- CRITICAL FIX: Start from TOP of block (y0), not bottom (y1) --- pdf_x = bbox.x0 pdf_y_top = page_height - bbox.y0 - paragraph_spacing_before + y_offset # Handle line breaks lines = text_content.split('\n') line_height = font_size * 1.2 # 120% of font size # Calculate list marker width for multi-line alignment marker_width = 0 if is_list_item and list_marker: # Use current font to calculate marker width marker_width = pdf_canvas.stringWidth(list_marker, pdf_canvas._fontname, font_size) # Draw each line with alignment for i, line in enumerate(lines): if not line.strip(): # Empty line: skip continue # Calculate Y position: Start from top, move down by line_height for each line # The first line's baseline is approx 1 line_height below the top line_y = pdf_y_top - ((i + 1) * line_height) + (font_size * 0.25) # 0.25 adjust for baseline # Get current font info font_name = pdf_canvas._fontname current_font_size = pdf_canvas._fontsize # Calculate line indentation line_indent = first_line_indent if i == 0 else indent # For list items: align subsequent lines with text after marker if is_list_item and i > 0 and marker_width > 0: line_indent += marker_width # Prepend list marker to first line rendered_line = line if is_list_item and i == 0 and list_marker: rendered_line = list_marker + line # Calculate text width text_width = pdf_canvas.stringWidth(rendered_line, font_name, current_font_size) available_width = bbox_width - line_indent # Scale font if needed if text_width > available_width and available_width > 0: scale_factor = available_width / text_width scaled_size = current_font_size * scale_factor * 0.95 scaled_size = max(scaled_size, 3) pdf_canvas.setFont(font_name, scaled_size) text_width = pdf_canvas.stringWidth(rendered_line, font_name, scaled_size) current_font_size = scaled_size # Calculate X position based on alignment line_x = pdf_x + line_indent if alignment == 'center': line_x = pdf_x + (bbox_width - text_width) / 2 elif alignment == 'right': line_x = pdf_x + bbox_width - text_width elif alignment == 'justify' and i < len(lines) - 1: # Justify: distribute extra space between words (except last line) words = rendered_line.split() if len(words) > 1: total_word_width = sum(pdf_canvas.stringWidth(word, font_name, current_font_size) for word in words) extra_space = available_width - total_word_width if extra_space > 0: word_spacing = extra_space / (len(words) - 1) # Draw words with calculated spacing x_pos = pdf_x + line_indent for word in words: pdf_canvas.drawString(x_pos, line_y, word) word_width = pdf_canvas.stringWidth(word, font_name, current_font_size) x_pos += word_width + word_spacing # Reset font for next line and skip normal drawString if text_width > available_width: pdf_canvas.setFont(font_name, font_size) continue # Draw the line at calculated position pdf_canvas.drawString(line_x, line_y, rendered_line) # Reset font size for next line if text_width > available_width: pdf_canvas.setFont(font_name, font_size) # Calculate actual text height used actual_text_height = len(lines) * line_height bbox_bottom_margin = bbox_height - actual_text_height - paragraph_spacing_before # Note: For list items, spacing_after is applied via y_offset in _draw_list_elements_direct # For other elements, spacing is inherent in element positioning (bbox-based layout) list_info = f", list={list_type}, level={list_level}" if is_list_item else "" y_offset_info = f", y_offset={y_offset:.1f}pt" if y_offset != 0 else "" logger.debug(f"Drew text element (fallback): {text_content[:30]}... " f"({len(lines)} lines, align={alignment}, indent={indent}{list_info}{y_offset_info}, " f"spacing_before={paragraph_spacing_before}, spacing_after={paragraph_spacing_after}, " f"actual_height={actual_text_height:.1f}, bbox_bottom_margin={bbox_bottom_margin:.1f})") except Exception as e: logger.error(f"Failed to draw text element {element.element_id}: {e}") def _build_rows_from_cells_dict(self, content: dict) -> list: """ Build row structure from cells dict (from Direct extraction JSON). The cells structure from Direct extraction: { "rows": 6, "cols": 2, "cells": [ {"row": 0, "col": 0, "content": "..."}, {"row": 0, "col": 1, "content": "..."}, ... ] } Returns format compatible with HTMLTableParser output: [ {"cells": [{"text": "..."}, {"text": "..."}]}, # row 0 {"cells": [{"text": "..."}, {"text": "..."}]}, # row 1 ... ] """ try: num_rows = content.get('rows', 0) num_cols = content.get('cols', 0) cells = content.get('cells', []) if not cells or num_rows == 0 or num_cols == 0: return [] # Initialize rows structure rows_data = [] for _ in range(num_rows): rows_data.append({'cells': [{'text': ''} for _ in range(num_cols)]}) # Fill in cell content for cell in cells: row_idx = cell.get('row', 0) col_idx = cell.get('col', 0) cell_content = cell.get('content', '') if 0 <= row_idx < num_rows and 0 <= col_idx < num_cols: rows_data[row_idx]['cells'][col_idx]['text'] = str(cell_content) if cell_content else '' logger.debug(f"Built {num_rows} rows from cells dict") return rows_data except Exception as e: logger.error(f"Error building rows from cells dict: {e}") return [] def _draw_table_element_direct( self, pdf_canvas: canvas.Canvas, element: 'DocumentElement', page_height: float ): """ Draw table element with Direct track positioning. Args: pdf_canvas: ReportLab canvas object element: DocumentElement with table content page_height: Page height for coordinate transformation """ try: # Get table data - can be TableData object or dict from JSON rows_data = None if isinstance(element.content, TableData): # Direct TableData object - convert to HTML then parse html_content = element.content.to_html() parser = HTMLTableParser() parser.feed(html_content) if parser.tables and parser.tables[0]['rows']: rows_data = parser.tables[0]['rows'] elif isinstance(element.content, dict): # Dict from JSON - check if it has cells structure (from Direct extraction) if 'cells' in element.content: # Build rows from cells structure directly (avoid HTML round-trip) rows_data = self._build_rows_from_cells_dict(element.content) elif 'html' in element.content: # Has HTML content - parse it html_content = element.content['html'] parser = HTMLTableParser() parser.feed(html_content) if parser.tables and parser.tables[0]['rows']: rows_data = parser.tables[0]['rows'] if not rows_data: logger.warning(f"No table data for {element.element_id}") return rows = rows_data # Get bbox bbox = element.bbox if not bbox: logger.warning(f"No bbox for table {element.element_id}") return # Transform coordinates pdf_x = bbox.x0 # Use exact bbox position (no buffer) - scaling will ensure table fits pdf_y = page_height - bbox.y1 # Bottom of table (ReportLab Y coordinate) table_width = bbox.x1 - bbox.x0 table_height = bbox.y1 - bbox.y0 # Build table data for ReportLab table_content = [] for row in rows: row_data = [cell['text'].strip() for cell in row['cells']] table_content.append(row_data) # Create table from reportlab.platypus import Table, TableStyle from reportlab.lib import colors # Use original column widths from extraction if available # Otherwise let ReportLab auto-calculate col_widths = None if element.metadata and 'column_widths' in element.metadata: col_widths = element.metadata['column_widths'] logger.debug(f"Using extracted column widths: {col_widths}") # NOTE: Don't use rowHeights from extraction - it causes content overlap # The extracted row heights are based on cell boundaries, not text content height. # When text wraps or uses different font sizes, the heights don't match. # Let ReportLab auto-calculate row heights based on content, then use scaling # to fit within the bbox (same approach as old commit ba8ddf2b). # Create table without rowHeights - let ReportLab auto-calculate t = Table(table_content, colWidths=col_widths) # Apply style with minimal padding to reduce table extension # Use Chinese font to support special characters (℃, μm, ≦, ×, Ω, etc.) font_for_table = self.font_name if self.font_registered else 'Helvetica' style = TableStyle([ ('GRID', (0, 0), (-1, -1), 0.5, colors.grey), ('FONTNAME', (0, 0), (-1, -1), font_for_table), ('FONTSIZE', (0, 0), (-1, -1), 8), ('ALIGN', (0, 0), (-1, -1), 'LEFT'), ('VALIGN', (0, 0), (-1, -1), 'TOP'), # Set minimal padding to prevent table from extending beyond bbox # User reported padding=1 was still insufficient ('TOPPADDING', (0, 0), (-1, -1), 0), ('BOTTOMPADDING', (0, 0), (-1, -1), 0), ('LEFTPADDING', (0, 0), (-1, -1), 1), ('RIGHTPADDING', (0, 0), (-1, -1), 1), ]) t.setStyle(style) # Use canvas scaling as fallback to fit table within bbox # With proper row heights, scaling should be minimal (close to 1.0) # Step 1: Wrap to get actual rendered size actual_width, actual_height = t.wrapOn(pdf_canvas, table_width * 10, table_height * 10) logger.info(f"Table natural size: {actual_width:.1f} × {actual_height:.1f}pt, bbox: {table_width:.1f} × {table_height:.1f}pt") # Step 2: Calculate scale factor to fit within bbox scale_x = table_width / actual_width if actual_width > table_width else 1.0 scale_y = table_height / actual_height if actual_height > table_height else 1.0 scale = min(scale_x, scale_y, 1.0) # Never scale up, only down logger.info(f"Scale factor: {scale:.3f} (x={scale_x:.3f}, y={scale_y:.3f})") # Step 3: Draw with scaling using canvas transform pdf_canvas.saveState() pdf_canvas.translate(pdf_x, pdf_y) pdf_canvas.scale(scale, scale) t.drawOn(pdf_canvas, 0, 0) pdf_canvas.restoreState() logger.info(f"Drew table at ({pdf_x:.1f}, {pdf_y:.1f}) with scale {scale:.3f}, final size: {actual_width * scale:.1f} × {actual_height * scale:.1f}pt") logger.debug(f"Drew table element: {len(rows)} rows") except Exception as e: logger.error(f"Failed to draw table element {element.element_id}: {e}") def _draw_image_element_direct( self, pdf_canvas: canvas.Canvas, element: 'DocumentElement', page_height: float, result_dir: Path ): """ Draw image element with Direct track positioning. Args: pdf_canvas: ReportLab canvas object element: DocumentElement with image content page_height: Page height for coordinate transformation result_dir: Directory containing image files """ try: # Get image path image_path_str = self._get_image_path(element) if not image_path_str: logger.warning(f"No image path for element {element.element_id}") return # Construct full path to image # saved_path is relative to result_dir (e.g., "document_id_p1_img0.png") image_path = result_dir / image_path_str # Fallback for legacy data if not image_path.exists(): image_path = result_dir / Path(image_path_str).name if not image_path.exists(): logger.warning(f"Image not found: {image_path_str} (in {result_dir})") return # Get bbox bbox = element.bbox if not bbox: logger.warning(f"No bbox for image {element.element_id}") return # Transform coordinates pdf_x = bbox.x0 pdf_y = page_height - bbox.y1 # Bottom of image image_width = bbox.x1 - bbox.x0 image_height = bbox.y1 - bbox.y0 # Draw image pdf_canvas.drawImage( str(image_path), pdf_x, pdf_y, width=image_width, height=image_height, preserveAspectRatio=True ) logger.debug(f"Drew image: {image_path} (from: {image_path_str})") except Exception as e: logger.error(f"Failed to draw image element {element.element_id}: {e}") # Singleton instance pdf_generator_service = PDFGeneratorService()