""" Layout-Preserving PDF Generation Service Generates PDF files that preserve the original document layout using OCR JSON data """ import json import logging from pathlib import Path from typing import Dict, List, Optional, Tuple from datetime import datetime from reportlab.lib.pagesizes import A4, letter from reportlab.lib.units import mm from reportlab.pdfgen import canvas from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.platypus import Table, TableStyle from reportlab.lib import colors from reportlab.lib.enums import TA_CENTER, TA_LEFT, TA_RIGHT from reportlab.platypus import Paragraph from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from PIL import Image from html.parser import HTMLParser from app.core.config import settings logger = logging.getLogger(__name__) class HTMLTableParser(HTMLParser): """Parse HTML table to extract structure and data""" def __init__(self): super().__init__() self.tables = [] self.current_table = None self.current_row = None self.current_cell = None self.in_table = False def handle_starttag(self, tag, attrs): attrs_dict = dict(attrs) if tag == 'table': self.in_table = True self.current_table = {'rows': []} elif tag == 'tr' and self.in_table: self.current_row = {'cells': []} elif tag in ('td', 'th') and self.in_table and self.current_row is not None: colspan = int(attrs_dict.get('colspan', 1)) rowspan = int(attrs_dict.get('rowspan', 1)) self.current_cell = { 'text': '', 'is_header': tag == 'th', 'colspan': colspan, 'rowspan': rowspan } def handle_endtag(self, tag): if tag == 'table' and self.in_table: if self.current_table and self.current_table['rows']: self.tables.append(self.current_table) self.current_table = None self.in_table = False elif tag == 'tr' and self.current_row is not None: if self.current_table is not None: self.current_table['rows'].append(self.current_row) self.current_row = None elif tag in ('td', 'th') and self.current_cell is not None: if self.current_row is not None: self.current_row['cells'].append(self.current_cell) self.current_cell = None def handle_data(self, data): if self.current_cell is not None: self.current_cell['text'] += data.strip() + ' ' class PDFGeneratorService: """Service for generating layout-preserving PDFs from OCR JSON data""" def __init__(self): """Initialize PDF generator with font configuration""" self.font_name = 'NotoSansSC' self.font_path = None self.font_registered = False self._register_chinese_font() def _register_chinese_font(self): """Register Chinese font for PDF generation""" try: # Get font path from settings font_path = Path(settings.chinese_font_path) # Try relative path from project root if not font_path.is_absolute(): # Adjust path - settings.chinese_font_path starts with ./backend/ project_root = Path(__file__).resolve().parent.parent.parent.parent font_path = project_root / font_path if not font_path.exists(): logger.error(f"Chinese font not found at {font_path}") return # Register font pdfmetrics.registerFont(TTFont(self.font_name, str(font_path))) self.font_path = font_path self.font_registered = True logger.info(f"Chinese font registered: {self.font_name} from {font_path}") except Exception as e: logger.error(f"Failed to register Chinese font: {e}") self.font_registered = False def load_ocr_json(self, json_path: Path) -> Optional[Dict]: """ Load and parse OCR JSON result file Args: json_path: Path to JSON file Returns: Parsed JSON data or None if failed """ try: with open(json_path, 'r', encoding='utf-8') as f: data = json.load(f) logger.info(f"Loaded OCR JSON: {json_path.name}") return data except Exception as e: logger.error(f"Failed to load JSON {json_path}: {e}") return None def calculate_page_dimensions(self, ocr_data: Dict, source_file_path: Optional[Path] = None) -> Tuple[float, float]: """ 從 OCR JSON 數據中推斷 OCR 處理時的實際頁面尺寸。 這非常重要,因為 OCR 可能在高解析度影像上運行。 Args: ocr_data: Complete OCR data dictionary with text_regions and layout source_file_path: Optional path to source file (fallback only) Returns: Tuple of (width, height) in points """ max_x = 0 max_y = 0 # *** 關鍵修復:檢查所有可能包含 bbox 的字段 *** # 不同版本的 OCR 輸出可能使用不同的字段名 all_regions = [] # 1. text_regions - 包含所有文字區域(最常見) if 'text_regions' in ocr_data: all_regions.extend(ocr_data['text_regions']) # 2. layout - 可能包含布局信息 if 'layout' in ocr_data and isinstance(ocr_data['layout'], list): all_regions.extend(ocr_data['layout']) # 3. layout_data.elements - PP-StructureV3 格式 if 'layout_data' in ocr_data and isinstance(ocr_data['layout_data'], dict): elements = ocr_data['layout_data'].get('elements', []) if elements: all_regions.extend(elements) if not all_regions: # 如果 JSON 為空,回退到原始檔案尺寸 logger.warning("JSON 中沒有找到任何包含 bbox 的區域,回退到原始檔案尺寸。") if source_file_path: dims = self.get_original_page_size(source_file_path) if dims: return dims return A4 region_count = 0 for region in all_regions: try: bbox = region.get('bbox') if not bbox: continue region_count += 1 # *** 關鍵修復:正確處理多邊形 [[x, y], ...] 格式 *** if isinstance(bbox[0], (int, float)): # 處理簡單的 [x1, y1, x2, y2] 格式 max_x = max(max_x, bbox[2]) max_y = max(max_y, bbox[3]) elif isinstance(bbox[0], (list, tuple)): # 處理多邊形 [[x, y], ...] 格式 x_coords = [p[0] for p in bbox if isinstance(p, (list, tuple)) and len(p) >= 2] y_coords = [p[1] for p in bbox if isinstance(p, (list, tuple)) and len(p) >= 2] if x_coords and y_coords: max_x = max(max_x, max(x_coords)) max_y = max(max_y, max(y_coords)) except Exception as e: logger.warning(f"Error processing bbox {bbox}: {e}") if max_x > 0 and max_y > 0: logger.info(f"從 {region_count} 個區域中推斷出的 OCR 座標系尺寸: {max_x:.1f} x {max_y:.1f}") return (max_x, max_y) else: # 如果所有 bbox 都解析失敗,才回退 logger.warning("無法從 bbox 推斷尺寸,回退到原始檔案尺寸。") if source_file_path: dims = self.get_original_page_size(source_file_path) if dims: return dims return A4 def get_original_page_size(self, file_path: Path) -> Optional[Tuple[float, float]]: """ Extract page dimensions from original source file Args: file_path: Path to original file (image or PDF) Returns: Tuple of (width, height) in points or None """ try: if not file_path.exists(): return None # For images, get dimensions from PIL if file_path.suffix.lower() in ['.png', '.jpg', '.jpeg', '.bmp', '.tiff']: img = Image.open(file_path) # Use pixel dimensions directly as points (1:1 mapping) # This matches how PaddleOCR reports coordinates width_pt = float(img.width) height_pt = float(img.height) logger.info(f"Extracted dimensions from image: {width_pt:.1f} x {height_pt:.1f} points (1:1 pixel mapping)") return (width_pt, height_pt) # For PDFs, extract dimensions using PyPDF2 if file_path.suffix.lower() == '.pdf': try: from PyPDF2 import PdfReader reader = PdfReader(file_path) if len(reader.pages) > 0: page = reader.pages[0] # MediaBox gives [x1, y1, x2, y2] in points mediabox = page.mediabox width_pt = float(mediabox.width) height_pt = float(mediabox.height) logger.info(f"Extracted dimensions from PDF: {width_pt:.1f} x {height_pt:.1f} points") return (width_pt, height_pt) except ImportError: logger.warning("PyPDF2 not available, cannot extract PDF dimensions") except Exception as e: logger.warning(f"Failed to extract PDF dimensions: {e}") except Exception as e: logger.warning(f"Failed to get page size from {file_path}: {e}") return None def draw_text_region( self, pdf_canvas: canvas.Canvas, region: Dict, page_height: float, scale_w: float = 1.0, scale_h: float = 1.0 ): """ Draw a text region at precise coordinates Args: pdf_canvas: ReportLab canvas object region: Text region dict with text, bbox, confidence page_height: Height of page (for coordinate transformation) scale_w: Scale factor for X coordinates (PDF width / OCR width) scale_h: Scale factor for Y coordinates (PDF height / OCR height) """ text = region.get('text', '') bbox = region.get('bbox', []) confidence = region.get('confidence', 1.0) if not text or not bbox or len(bbox) < 4: return try: # bbox from OCR: [[x1,y1], [x2,y2], [x3,y3], [x4,y4]] # Points: top-left, top-right, bottom-right, bottom-left # OCR coordinates: origin (0,0) at top-left, Y increases downward ocr_x_left = bbox[0][0] # Left X ocr_y_top = bbox[0][1] # Top Y in OCR coordinates ocr_x_right = bbox[2][0] # Right X ocr_y_bottom = bbox[2][1] # Bottom Y in OCR coordinates # Apply scale factors to convert from OCR space to PDF space ocr_x_left = ocr_x_left * scale_w ocr_y_top = ocr_y_top * scale_h ocr_x_right = ocr_x_right * scale_w ocr_y_bottom = ocr_y_bottom * scale_h # Calculate bbox dimensions (after scaling) bbox_width = abs(ocr_x_right - ocr_x_left) bbox_height = abs(ocr_y_bottom - ocr_y_top) # Calculate font size using heuristics # Font size is typically 70-90% of bbox height # Testing shows 0.75 works well for most cases font_size = bbox_height * 0.75 font_size = max(min(font_size, 72), 4) # Clamp between 4pt and 72pt # Transform coordinates: OCR (top-left origin) → PDF (bottom-left origin) # CRITICAL: Y-axis flip! pdf_x = ocr_x_left pdf_y = page_height - ocr_y_bottom # Flip Y-axis using bottom coordinate # Set font font_name = self.font_name if self.font_registered else 'Helvetica' pdf_canvas.setFont(font_name, font_size) # Calculate text width to prevent overflow text_width = pdf_canvas.stringWidth(text, font_name, font_size) # If text is too wide for bbox, scale down font if text_width > bbox_width: scale_factor = bbox_width / text_width font_size = font_size * scale_factor * 0.95 # 95% to add small margin font_size = max(font_size, 3) # Minimum 3pt pdf_canvas.setFont(font_name, font_size) # Draw text at calculated position pdf_canvas.drawString(pdf_x, pdf_y, text) # Debug: Draw bounding box (optional) if settings.pdf_enable_bbox_debug: pdf_canvas.setStrokeColorRGB(1, 0, 0, 0.3) # Red, semi-transparent pdf_canvas.setLineWidth(0.5) # Transform all bbox points to PDF coordinates (apply scaling first) pdf_points = [(p[0] * scale_w, page_height - p[1] * scale_h) for p in bbox] # Draw bbox rectangle for i in range(4): x1, y1 = pdf_points[i] x2, y2 = pdf_points[(i + 1) % 4] pdf_canvas.line(x1, y1, x2, y2) except Exception as e: logger.warning(f"Failed to draw text region '{text[:20]}...': {e}") def draw_table_region( self, pdf_canvas: canvas.Canvas, table_element: Dict, images_metadata: List[Dict], page_height: float, scale_w: float = 1.0, scale_h: float = 1.0 ): """ Draw a table region by parsing HTML and rebuilding with ReportLab Table Args: pdf_canvas: ReportLab canvas object table_element: Table element dict with HTML content images_metadata: List of image metadata to find table bbox page_height: Height of page scale_w: Scale factor for X coordinates (PDF width / OCR width) scale_h: Scale factor for Y coordinates (PDF height / OCR height) """ try: html_content = table_element.get('content', '') if not html_content: return # Parse HTML to extract table structure parser = HTMLTableParser() parser.feed(html_content) if not parser.tables: logger.warning("No tables found in HTML content") return # Get the first table (PP-StructureV3 usually provides one table per element) table_data = parser.tables[0] rows = table_data['rows'] if not rows: return # Find corresponding table image to get bbox table_bbox = None for img_meta in images_metadata: img_path = img_meta.get('image_path', '') if 'table' in img_path.lower(): bbox = img_meta.get('bbox', []) if bbox and len(bbox) >= 4: table_bbox = bbox break if not table_bbox: logger.warning("No bbox found for table") return # Extract bbox coordinates and apply scaling ocr_x_left = table_bbox[0][0] * scale_w ocr_y_top = table_bbox[0][1] * scale_h ocr_x_right = table_bbox[2][0] * scale_w ocr_y_bottom = table_bbox[2][1] * scale_h table_width = abs(ocr_x_right - ocr_x_left) table_height = abs(ocr_y_bottom - ocr_y_top) # Transform coordinates pdf_x = ocr_x_left pdf_y = page_height - ocr_y_bottom # Build table data for ReportLab # Convert parsed structure to simple 2D array max_cols = max(len(row['cells']) for row in rows) reportlab_data = [] for row in rows: row_data = [] for cell in row['cells']: text = cell['text'].strip() row_data.append(text) # Pad row if needed while len(row_data) < max_cols: row_data.append('') reportlab_data.append(row_data) # Calculate column widths (equal distribution) col_widths = [table_width / max_cols] * max_cols # Create ReportLab Table # Use smaller font size to fit in bbox font_size = min(table_height / len(rows) * 0.5, 10) font_size = max(font_size, 6) # Create table with font table = Table(reportlab_data, colWidths=col_widths) # Apply table style style = TableStyle([ ('FONT', (0, 0), (-1, -1), self.font_name if self.font_registered else 'Helvetica', font_size), ('GRID', (0, 0), (-1, -1), 0.5, colors.black), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ('ALIGN', (0, 0), (-1, -1), 'CENTER'), ('LEFTPADDING', (0, 0), (-1, -1), 2), ('RIGHTPADDING', (0, 0), (-1, -1), 2), ('TOPPADDING', (0, 0), (-1, -1), 2), ('BOTTOMPADDING', (0, 0), (-1, -1), 2), ]) # Add header style if first row has headers if rows and rows[0]['cells'] and rows[0]['cells'][0].get('is_header'): style.add('BACKGROUND', (0, 0), (-1, 0), colors.lightgrey) style.add('FONT', (0, 0), (-1, 0), self.font_name if self.font_registered else 'Helvetica-Bold', font_size) table.setStyle(style) # Calculate table size table.wrapOn(pdf_canvas, table_width, table_height) # Draw table at position table.drawOn(pdf_canvas, pdf_x, pdf_y) logger.info(f"Drew table at ({pdf_x:.0f}, {pdf_y:.0f}) size {table_width:.0f}x{table_height:.0f} with {len(rows)} rows") except Exception as e: logger.warning(f"Failed to draw table region: {e}") import traceback traceback.print_exc() def draw_image_region( self, pdf_canvas: canvas.Canvas, region: Dict, page_height: float, result_dir: Path, scale_w: float = 1.0, scale_h: float = 1.0 ): """ Draw an image region by embedding the extracted image Handles images extracted by PP-StructureV3 (tables, figures, charts, etc.) Args: pdf_canvas: ReportLab canvas object region: Image metadata dict with image_path and bbox page_height: Height of page (for coordinate transformation) result_dir: Directory containing result files scale_w: Scale factor for X coordinates (PDF width / OCR width) scale_h: Scale factor for Y coordinates (PDF height / OCR height) """ try: image_path_str = region.get('image_path', '') if not image_path_str: return # Construct full path to image image_path = result_dir / image_path_str if not image_path.exists(): logger.warning(f"Image not found: {image_path}") return # Get bbox for positioning bbox = region.get('bbox', []) if not bbox or len(bbox) < 4: # If no bbox, skip for now logger.warning(f"No bbox for image {image_path_str}") return # bbox from OCR: [[x1,y1], [x2,y2], [x3,y3], [x4,y4]] # OCR coordinates: origin (0,0) at top-left, Y increases downward ocr_x_left = bbox[0][0] * scale_w ocr_y_top = bbox[0][1] * scale_h ocr_x_right = bbox[2][0] * scale_w ocr_y_bottom = bbox[2][1] * scale_h # Calculate bbox dimensions (after scaling) bbox_width = abs(ocr_x_right - ocr_x_left) bbox_height = abs(ocr_y_bottom - ocr_y_top) # Transform coordinates: OCR (top-left origin) → PDF (bottom-left origin) # CRITICAL: Y-axis flip! # For images, we position at bottom-left corner pdf_x_left = ocr_x_left pdf_y_bottom = page_height - ocr_y_bottom # Flip Y-axis # Draw image using ReportLab # drawImage expects: (path, x, y, width, height) # where (x, y) is the bottom-left corner of the image pdf_canvas.drawImage( str(image_path), pdf_x_left, pdf_y_bottom, width=bbox_width, height=bbox_height, preserveAspectRatio=True, mask='auto' # Handle transparency ) logger.info(f"Drew image: {image_path_str} at ({pdf_x_left:.0f}, {pdf_y_bottom:.0f}) size {bbox_width:.0f}x{bbox_height:.0f}") except Exception as e: logger.warning(f"Failed to draw image region: {e}") def generate_layout_pdf( self, json_path: Path, output_path: Path, source_file_path: Optional[Path] = None ) -> bool: """ Generate layout-preserving PDF from OCR JSON data Args: json_path: Path to OCR JSON file output_path: Path to save generated PDF source_file_path: Optional path to original source file for dimension extraction Returns: True if successful, False otherwise """ try: # Check if PDF already exists (caching) if output_path.exists(): logger.info(f"PDF already exists: {output_path.name}") return True # Load JSON data ocr_data = self.load_ocr_json(json_path) if not ocr_data: return False # Get text regions text_regions = ocr_data.get('text_regions', []) if not text_regions: logger.warning("No text regions found in JSON") return False # Get images metadata images_metadata = ocr_data.get('images_metadata', []) # Get layout data layout_data = ocr_data.get('layout_data', {}) # Step 1: Get OCR processing dimensions (the large image OCR actually used) # This comes from analyzing all bbox coordinates in the OCR data ocr_width, ocr_height = self.calculate_page_dimensions(ocr_data, source_file_path=None) logger.info(f"OCR 處理時使用的座標系尺寸: {ocr_width:.1f} x {ocr_height:.1f}") # Step 2: Get target PDF dimensions (usually the original file size) # This is what we want the final PDF size to be if source_file_path: target_dims = self.get_original_page_size(source_file_path) if target_dims: target_width, target_height = target_dims logger.info(f"目標 PDF 尺寸(來自原始文件): {target_width:.1f} x {target_height:.1f}") else: # If we can't get original size, use OCR dimensions as target target_width, target_height = ocr_width, ocr_height logger.warning(f"無法獲取原始文件尺寸,使用 OCR 尺寸作為目標: {target_width:.1f} x {target_height:.1f}") else: # No source file, use OCR dimensions as target (1:1 mapping) target_width, target_height = ocr_width, ocr_height logger.info(f"無原始文件,使用 OCR 尺寸作為目標: {target_width:.1f} x {target_height:.1f}") # Step 3: Calculate scale factors to convert OCR coordinates to PDF coordinates scale_w = target_width / ocr_width scale_h = target_height / ocr_height logger.info(f"縮放因子: X={scale_w:.3f}, Y={scale_h:.3f} (OCR座標 → PDF座標)") # Create PDF canvas with target dimensions pdf_canvas = canvas.Canvas(str(output_path), pagesize=(target_width, target_height)) # Extract table bboxes to exclude text in those regions table_bboxes = [] for img_meta in images_metadata: img_path = img_meta.get('image_path', '') if 'table' in img_path.lower(): bbox = img_meta.get('bbox', []) if bbox and len(bbox) >= 4: table_bboxes.append(bbox) # Helper function to check if a point is inside a bbox def point_in_bbox(x, y, bbox): x1, y1 = bbox[0] x2, y2 = bbox[2] return min(x1, x2) <= x <= max(x1, x2) and min(y1, y2) <= y <= max(y1, y2) # Filter text regions to exclude those inside tables filtered_text_regions = [] for region in text_regions: bbox = region.get('bbox', []) if not bbox or len(bbox) < 4: continue # Check if text region center is inside any table bbox center_x = (bbox[0][0] + bbox[2][0]) / 2 center_y = (bbox[0][1] + bbox[2][1]) / 2 is_in_table = any(point_in_bbox(center_x, center_y, table_bbox) for table_bbox in table_bboxes) if not is_in_table: filtered_text_regions.append(region) else: logger.debug(f"Excluded text '{region.get('text', '')[:20]}...' (inside table)") logger.info(f"Filtered {len(text_regions) - len(filtered_text_regions)} text regions inside tables") # Group regions by page pages_data = {} for region in filtered_text_regions: page_num = region.get('page', 1) if page_num not in pages_data: pages_data[page_num] = [] pages_data[page_num].append(region) # Get table elements from layout_data table_elements = [] if layout_data and layout_data.get('elements'): table_elements = [e for e in layout_data['elements'] if e.get('type') == 'table'] # Process each page total_pages = ocr_data.get('total_pages', 1) for page_num in range(1, total_pages + 1): if page_num > 1: pdf_canvas.showPage() # Start new page # Draw text regions for this page (excluding table text) page_regions = pages_data.get(page_num, []) for region in page_regions: self.draw_text_region(pdf_canvas, region, target_height, scale_w, scale_h) # Draw tables for this page for table_elem in table_elements: if table_elem.get('page', 0) == page_num - 1: # page is 0-indexed self.draw_table_region(pdf_canvas, table_elem, images_metadata, target_height, scale_w, scale_h) # Draw non-table images for this page (figure, chart, seal, etc.) for img_meta in images_metadata: if img_meta.get('page') == page_num - 1: # page is 0-indexed img_path = img_meta.get('image_path', '') # Skip table images (they're now rendered as tables) if 'table' not in img_path.lower(): self.draw_image_region( pdf_canvas, img_meta, target_height, json_path.parent, scale_w, scale_h ) # Save PDF pdf_canvas.save() file_size = output_path.stat().st_size logger.info(f"Generated layout-preserving PDF: {output_path.name} ({file_size} bytes)") return True except Exception as e: logger.error(f"Failed to generate PDF: {e}") import traceback traceback.print_exc() return False # Singleton instance pdf_generator_service = PDFGeneratorService()