feat: enable document orientation detection for scanned PDFs
- Enable PP-StructureV3's use_doc_orientation_classify feature - Detect rotation angle from doc_preprocessor_res.angle - Swap page dimensions (width <-> height) for 90°/270° rotations - Output PDF now correctly displays landscape-scanned content Also includes: - Archive completed openspec proposals - Add simplify-frontend-ocr-config proposal (pending) - Code cleanup and frontend simplification 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
@@ -1,583 +0,0 @@
|
||||
"""
|
||||
Cell Validation Engine
|
||||
|
||||
Validates PP-StructureV3 table detections using metric-based heuristics
|
||||
to filter over-detected cells and reclassify invalid tables as TEXT elements.
|
||||
|
||||
Metrics used:
|
||||
- Cell density: cells per 10,000 px² (normal: 0.4-1.0, over-detected: 6+)
|
||||
- Average cell area: px² per cell (normal: 10,000-25,000, over-detected: ~1,600)
|
||||
- Cell height: table_height / cell_count (minimum: 10px for readable text)
|
||||
"""
|
||||
|
||||
import logging
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Dict, Any, Optional, Tuple
|
||||
from html.parser import HTMLParser
|
||||
import re
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class CellValidationConfig:
|
||||
"""Configuration for cell validation thresholds."""
|
||||
max_cell_density: float = 3.0 # cells per 10,000 px²
|
||||
min_avg_cell_area: float = 3000.0 # px² per cell
|
||||
min_cell_height: float = 10.0 # px per cell row
|
||||
enabled: bool = True
|
||||
|
||||
|
||||
@dataclass
|
||||
class TableValidationResult:
|
||||
"""Result of table validation."""
|
||||
is_valid: bool
|
||||
table_element: Dict[str, Any]
|
||||
reason: Optional[str] = None
|
||||
metrics: Optional[Dict[str, float]] = None
|
||||
|
||||
|
||||
class CellValidationEngine:
|
||||
"""
|
||||
Validates table elements from PP-StructureV3 output.
|
||||
|
||||
Over-detected tables are identified by abnormal metrics and
|
||||
reclassified as TEXT elements while preserving content.
|
||||
"""
|
||||
|
||||
def __init__(self, config: Optional[CellValidationConfig] = None):
|
||||
self.config = config or CellValidationConfig()
|
||||
|
||||
def calculate_table_metrics(
|
||||
self,
|
||||
bbox: List[float],
|
||||
cell_boxes: List[List[float]]
|
||||
) -> Dict[str, float]:
|
||||
"""
|
||||
Calculate validation metrics for a table.
|
||||
|
||||
Args:
|
||||
bbox: Table bounding box [x0, y0, x1, y1]
|
||||
cell_boxes: List of cell bounding boxes
|
||||
|
||||
Returns:
|
||||
Dictionary with calculated metrics
|
||||
"""
|
||||
if len(bbox) < 4:
|
||||
return {"cell_count": 0, "cell_density": 0, "avg_cell_area": 0, "avg_cell_height": 0}
|
||||
|
||||
cell_count = len(cell_boxes)
|
||||
if cell_count == 0:
|
||||
return {"cell_count": 0, "cell_density": 0, "avg_cell_area": 0, "avg_cell_height": 0}
|
||||
|
||||
# Calculate table dimensions
|
||||
table_width = bbox[2] - bbox[0]
|
||||
table_height = bbox[3] - bbox[1]
|
||||
table_area = table_width * table_height
|
||||
|
||||
if table_area <= 0:
|
||||
return {"cell_count": cell_count, "cell_density": 0, "avg_cell_area": 0, "avg_cell_height": 0}
|
||||
|
||||
# Cell density: cells per 10,000 px²
|
||||
cell_density = (cell_count / table_area) * 10000
|
||||
|
||||
# Average cell area
|
||||
avg_cell_area = table_area / cell_count
|
||||
|
||||
# Average cell height (table height / cell count)
|
||||
avg_cell_height = table_height / cell_count
|
||||
|
||||
return {
|
||||
"cell_count": cell_count,
|
||||
"table_width": table_width,
|
||||
"table_height": table_height,
|
||||
"table_area": table_area,
|
||||
"cell_density": cell_density,
|
||||
"avg_cell_area": avg_cell_area,
|
||||
"avg_cell_height": avg_cell_height
|
||||
}
|
||||
|
||||
def validate_table(
|
||||
self,
|
||||
element: Dict[str, Any]
|
||||
) -> TableValidationResult:
|
||||
"""
|
||||
Validate a single table element.
|
||||
|
||||
Args:
|
||||
element: Table element from PP-StructureV3 output
|
||||
|
||||
Returns:
|
||||
TableValidationResult with validation status and metrics
|
||||
"""
|
||||
if not self.config.enabled:
|
||||
return TableValidationResult(is_valid=True, table_element=element)
|
||||
|
||||
# Extract bbox and cell_boxes
|
||||
bbox = element.get("bbox", [])
|
||||
cell_boxes = element.get("cell_boxes", [])
|
||||
|
||||
# Tables without cells pass validation (structure-only tables)
|
||||
if not cell_boxes:
|
||||
return TableValidationResult(
|
||||
is_valid=True,
|
||||
table_element=element,
|
||||
reason="No cells to validate"
|
||||
)
|
||||
|
||||
# Calculate metrics
|
||||
metrics = self.calculate_table_metrics(bbox, cell_boxes)
|
||||
|
||||
# Check cell density
|
||||
if metrics["cell_density"] > self.config.max_cell_density:
|
||||
return TableValidationResult(
|
||||
is_valid=False,
|
||||
table_element=element,
|
||||
reason=f"Cell density {metrics['cell_density']:.2f} exceeds threshold {self.config.max_cell_density}",
|
||||
metrics=metrics
|
||||
)
|
||||
|
||||
# Check average cell area
|
||||
if metrics["avg_cell_area"] < self.config.min_avg_cell_area:
|
||||
return TableValidationResult(
|
||||
is_valid=False,
|
||||
table_element=element,
|
||||
reason=f"Avg cell area {metrics['avg_cell_area']:.0f}px² below threshold {self.config.min_avg_cell_area}px²",
|
||||
metrics=metrics
|
||||
)
|
||||
|
||||
# Check cell height
|
||||
if metrics["avg_cell_height"] < self.config.min_cell_height:
|
||||
return TableValidationResult(
|
||||
is_valid=False,
|
||||
table_element=element,
|
||||
reason=f"Avg cell height {metrics['avg_cell_height']:.1f}px below threshold {self.config.min_cell_height}px",
|
||||
metrics=metrics
|
||||
)
|
||||
|
||||
# Content-based validation: check if content looks like prose vs tabular data
|
||||
content_check = self._validate_table_content(element)
|
||||
if not content_check["is_tabular"]:
|
||||
return TableValidationResult(
|
||||
is_valid=False,
|
||||
table_element=element,
|
||||
reason=content_check["reason"],
|
||||
metrics=metrics
|
||||
)
|
||||
|
||||
return TableValidationResult(
|
||||
is_valid=True,
|
||||
table_element=element,
|
||||
metrics=metrics
|
||||
)
|
||||
|
||||
def _validate_table_content(self, element: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Validate table content to detect false positive tables.
|
||||
|
||||
Checks:
|
||||
1. Sparsity: text coverage ratio (text area / table area)
|
||||
2. Header: does table have proper header structure
|
||||
3. Key-Value: for 2-col tables, is it a key-value list or random layout
|
||||
4. Prose: are cells containing long prose text
|
||||
|
||||
Returns:
|
||||
Dict with is_tabular (bool) and reason (str)
|
||||
"""
|
||||
html_content = element.get("content", "")
|
||||
bbox = element.get("bbox", [])
|
||||
cell_boxes = element.get("cell_boxes", [])
|
||||
|
||||
if not html_content or '<table' not in html_content.lower():
|
||||
return {"is_tabular": True, "reason": "no_html_content"}
|
||||
|
||||
try:
|
||||
from bs4 import BeautifulSoup
|
||||
soup = BeautifulSoup(html_content, 'html.parser')
|
||||
table = soup.find('table')
|
||||
if not table:
|
||||
return {"is_tabular": True, "reason": "no_table_element"}
|
||||
|
||||
rows = table.find_all('tr')
|
||||
if not rows:
|
||||
return {"is_tabular": True, "reason": "no_rows"}
|
||||
|
||||
# Extract cell contents with row structure
|
||||
row_data = []
|
||||
all_cells = []
|
||||
for row_idx, row in enumerate(rows):
|
||||
cells = row.find_all(['td', 'th'])
|
||||
row_cells = []
|
||||
for cell in cells:
|
||||
text = cell.get_text(strip=True)
|
||||
colspan = int(cell.get('colspan', 1))
|
||||
is_header = cell.name == 'th'
|
||||
cell_info = {
|
||||
"text": text,
|
||||
"length": len(text),
|
||||
"colspan": colspan,
|
||||
"is_header": is_header,
|
||||
"row": row_idx
|
||||
}
|
||||
row_cells.append(cell_info)
|
||||
all_cells.append(cell_info)
|
||||
row_data.append(row_cells)
|
||||
|
||||
if not all_cells:
|
||||
return {"is_tabular": True, "reason": "no_cells"}
|
||||
|
||||
num_rows = len(row_data)
|
||||
num_cols = max(len(r) for r in row_data) if row_data else 0
|
||||
|
||||
# === Check 1: Sparsity (text coverage) ===
|
||||
sparsity_result = self._check_sparsity(bbox, cell_boxes, all_cells)
|
||||
if not sparsity_result["is_valid"]:
|
||||
return {"is_tabular": False, "reason": sparsity_result["reason"]}
|
||||
|
||||
# === Check 2: Header structure ===
|
||||
header_result = self._check_header_structure(row_data, num_cols)
|
||||
if not header_result["has_header"] and num_rows > 3:
|
||||
# Large table without header is suspicious
|
||||
logger.debug(f"Table has no header structure with {num_rows} rows")
|
||||
|
||||
# === Check 3: Key-Value pattern for 2-column tables ===
|
||||
if num_cols == 2:
|
||||
kv_result = self._check_key_value_pattern(row_data)
|
||||
if kv_result["is_kv_list"] and kv_result["confidence"] > 0.7:
|
||||
# High confidence key-value list - keep as table but log
|
||||
logger.debug(f"Table identified as key-value list (conf={kv_result['confidence']:.2f})")
|
||||
elif not kv_result["is_kv_list"] and kv_result["is_random_layout"]:
|
||||
# Random 2-column layout, not a real table
|
||||
return {
|
||||
"is_tabular": False,
|
||||
"reason": f"random_two_column_layout (not key-value)"
|
||||
}
|
||||
|
||||
# === Check 4: Prose content ===
|
||||
long_cells = [c for c in all_cells if c["length"] > 80]
|
||||
prose_ratio = len(long_cells) / len(all_cells) if all_cells else 0
|
||||
if prose_ratio > 0.3:
|
||||
return {
|
||||
"is_tabular": False,
|
||||
"reason": f"prose_content ({len(long_cells)}/{len(all_cells)} cells > 80 chars)"
|
||||
}
|
||||
|
||||
# === Check 5: Section header as table ===
|
||||
if num_rows <= 2 and num_cols <= 2:
|
||||
first_row = row_data[0] if row_data else []
|
||||
if len(first_row) == 1:
|
||||
text = first_row[0]["text"]
|
||||
if text.isupper() and len(text) < 50:
|
||||
return {
|
||||
"is_tabular": False,
|
||||
"reason": f"section_header_only ({text[:30]})"
|
||||
}
|
||||
|
||||
return {"is_tabular": True, "reason": "content_valid"}
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Content validation failed: {e}")
|
||||
return {"is_tabular": True, "reason": f"validation_error: {e}"}
|
||||
|
||||
def _check_sparsity(
|
||||
self,
|
||||
bbox: List[float],
|
||||
cell_boxes: List[List[float]],
|
||||
all_cells: List[Dict]
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Check text coverage ratio (sparsity).
|
||||
|
||||
Two-column layouts have large empty gaps in the middle.
|
||||
Real tables have more uniform cell distribution.
|
||||
"""
|
||||
if len(bbox) < 4:
|
||||
return {"is_valid": True, "reason": "no_bbox"}
|
||||
|
||||
table_width = bbox[2] - bbox[0]
|
||||
table_height = bbox[3] - bbox[1]
|
||||
table_area = table_width * table_height
|
||||
|
||||
if table_area <= 0:
|
||||
return {"is_valid": True, "reason": "invalid_area"}
|
||||
|
||||
# Calculate text area from cell_boxes
|
||||
if cell_boxes:
|
||||
text_area = 0
|
||||
for cb in cell_boxes:
|
||||
if len(cb) >= 4:
|
||||
w = abs(cb[2] - cb[0])
|
||||
h = abs(cb[3] - cb[1])
|
||||
text_area += w * h
|
||||
coverage = text_area / table_area
|
||||
else:
|
||||
# Estimate from cell content length
|
||||
total_chars = sum(c["length"] for c in all_cells)
|
||||
# Rough estimate: 1 char ≈ 8x12 pixels = 96 px²
|
||||
estimated_text_area = total_chars * 96
|
||||
coverage = min(estimated_text_area / table_area, 1.0)
|
||||
|
||||
# Very sparse table (< 15% coverage) is suspicious
|
||||
if coverage < 0.15:
|
||||
return {
|
||||
"is_valid": False,
|
||||
"reason": f"sparse_content (coverage={coverage:.1%})"
|
||||
}
|
||||
|
||||
return {"is_valid": True, "coverage": coverage}
|
||||
|
||||
def _check_header_structure(
|
||||
self,
|
||||
row_data: List[List[Dict]],
|
||||
num_cols: int
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Check if table has proper header structure.
|
||||
|
||||
Real tables usually have:
|
||||
- First row with <th> elements
|
||||
- Or first row with different content pattern (labels vs values)
|
||||
"""
|
||||
if not row_data:
|
||||
return {"has_header": False}
|
||||
|
||||
first_row = row_data[0]
|
||||
|
||||
# Check for <th> elements
|
||||
th_count = sum(1 for c in first_row if c.get("is_header", False))
|
||||
if th_count > 0 and th_count >= len(first_row) * 0.5:
|
||||
return {"has_header": True, "type": "th_elements"}
|
||||
|
||||
# Check for header-like content (short, distinct from body)
|
||||
if len(row_data) > 1:
|
||||
first_row_avg_len = sum(c["length"] for c in first_row) / len(first_row) if first_row else 0
|
||||
body_rows = row_data[1:]
|
||||
body_cells = [c for row in body_rows for c in row]
|
||||
body_avg_len = sum(c["length"] for c in body_cells) / len(body_cells) if body_cells else 0
|
||||
|
||||
# Header row should be shorter (labels) than body (data)
|
||||
if first_row_avg_len < body_avg_len * 0.7:
|
||||
return {"has_header": True, "type": "short_labels"}
|
||||
|
||||
return {"has_header": False}
|
||||
|
||||
def _check_key_value_pattern(
|
||||
self,
|
||||
row_data: List[List[Dict]]
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
For 2-column tables, check if it's a key-value list.
|
||||
|
||||
Key-value characteristics:
|
||||
- Left column: short labels (< 30 chars)
|
||||
- Right column: values (can be longer)
|
||||
- Consistent pattern across rows
|
||||
|
||||
Random layout characteristics:
|
||||
- Both columns have similar length distribution
|
||||
- No clear label-value relationship
|
||||
"""
|
||||
if not row_data:
|
||||
return {"is_kv_list": False, "is_random_layout": False, "confidence": 0}
|
||||
|
||||
left_lengths = []
|
||||
right_lengths = []
|
||||
kv_rows = 0
|
||||
total_rows = 0
|
||||
|
||||
for row in row_data:
|
||||
if len(row) != 2:
|
||||
continue
|
||||
total_rows += 1
|
||||
left = row[0]
|
||||
right = row[1]
|
||||
left_lengths.append(left["length"])
|
||||
right_lengths.append(right["length"])
|
||||
|
||||
# Key-value pattern: left is short label, right is value
|
||||
if left["length"] < 40 and left["length"] < right["length"] * 2:
|
||||
kv_rows += 1
|
||||
|
||||
if total_rows == 0:
|
||||
return {"is_kv_list": False, "is_random_layout": False, "confidence": 0}
|
||||
|
||||
kv_ratio = kv_rows / total_rows
|
||||
avg_left = sum(left_lengths) / len(left_lengths) if left_lengths else 0
|
||||
avg_right = sum(right_lengths) / len(right_lengths) if right_lengths else 0
|
||||
|
||||
# High KV ratio and left column is shorter = key-value list
|
||||
if kv_ratio > 0.6 and avg_left < avg_right:
|
||||
return {
|
||||
"is_kv_list": True,
|
||||
"is_random_layout": False,
|
||||
"confidence": kv_ratio,
|
||||
"avg_left": avg_left,
|
||||
"avg_right": avg_right
|
||||
}
|
||||
|
||||
# Similar lengths on both sides = random layout
|
||||
if avg_left > 0 and 0.5 < avg_right / avg_left < 2.0:
|
||||
# Both columns have similar content length
|
||||
return {
|
||||
"is_kv_list": False,
|
||||
"is_random_layout": True,
|
||||
"confidence": 1 - kv_ratio,
|
||||
"avg_left": avg_left,
|
||||
"avg_right": avg_right
|
||||
}
|
||||
|
||||
return {
|
||||
"is_kv_list": False,
|
||||
"is_random_layout": False,
|
||||
"confidence": 0,
|
||||
"avg_left": avg_left,
|
||||
"avg_right": avg_right
|
||||
}
|
||||
|
||||
def extract_text_from_table_html(self, html_content: str) -> str:
|
||||
"""
|
||||
Extract plain text from table HTML content.
|
||||
|
||||
Args:
|
||||
html_content: HTML string containing table structure
|
||||
|
||||
Returns:
|
||||
Plain text extracted from table cells
|
||||
"""
|
||||
if not html_content:
|
||||
return ""
|
||||
|
||||
try:
|
||||
class TableTextExtractor(HTMLParser):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.text_parts = []
|
||||
self.in_cell = False
|
||||
|
||||
def handle_starttag(self, tag, attrs):
|
||||
if tag in ('td', 'th'):
|
||||
self.in_cell = True
|
||||
|
||||
def handle_endtag(self, tag):
|
||||
if tag in ('td', 'th'):
|
||||
self.in_cell = False
|
||||
|
||||
def handle_data(self, data):
|
||||
if self.in_cell:
|
||||
stripped = data.strip()
|
||||
if stripped:
|
||||
self.text_parts.append(stripped)
|
||||
|
||||
parser = TableTextExtractor()
|
||||
parser.feed(html_content)
|
||||
return ' '.join(parser.text_parts)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to parse table HTML: {e}")
|
||||
# Fallback: strip HTML tags with regex
|
||||
text = re.sub(r'<[^>]+>', ' ', html_content)
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
return text
|
||||
|
||||
def reclassify_as_text(self, element: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Convert an over-detected table element to a TEXT element.
|
||||
|
||||
Args:
|
||||
element: Table element to reclassify
|
||||
|
||||
Returns:
|
||||
New TEXT element with preserved content
|
||||
"""
|
||||
# Extract text content from HTML
|
||||
html_content = element.get("content", "")
|
||||
text_content = self.extract_text_from_table_html(html_content)
|
||||
|
||||
# Create new TEXT element
|
||||
text_element = {
|
||||
"element_id": element.get("element_id", ""),
|
||||
"type": "text",
|
||||
"original_type": "table_reclassified", # Mark as reclassified
|
||||
"content": text_content,
|
||||
"page": element.get("page", 0),
|
||||
"bbox": element.get("bbox", []),
|
||||
"index": element.get("index", 0),
|
||||
"confidence": element.get("confidence", 1.0),
|
||||
"reclassified_from": "table",
|
||||
"reclassification_reason": "over_detection"
|
||||
}
|
||||
|
||||
return text_element
|
||||
|
||||
def validate_and_filter_elements(
|
||||
self,
|
||||
elements: List[Dict[str, Any]]
|
||||
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
||||
"""
|
||||
Validate all elements and filter/reclassify over-detected tables.
|
||||
|
||||
Args:
|
||||
elements: List of elements from PP-StructureV3 output
|
||||
|
||||
Returns:
|
||||
Tuple of (filtered_elements, statistics)
|
||||
"""
|
||||
filtered_elements = []
|
||||
stats = {
|
||||
"total_tables": 0,
|
||||
"valid_tables": 0,
|
||||
"reclassified_tables": 0,
|
||||
"reclassification_details": []
|
||||
}
|
||||
|
||||
for element in elements:
|
||||
if element.get("type") != "table":
|
||||
# Non-table elements pass through unchanged
|
||||
filtered_elements.append(element)
|
||||
continue
|
||||
|
||||
stats["total_tables"] += 1
|
||||
|
||||
# Validate table
|
||||
result = self.validate_table(element)
|
||||
|
||||
if result.is_valid:
|
||||
stats["valid_tables"] += 1
|
||||
filtered_elements.append(element)
|
||||
else:
|
||||
# Reclassify as TEXT
|
||||
stats["reclassified_tables"] += 1
|
||||
text_element = self.reclassify_as_text(element)
|
||||
filtered_elements.append(text_element)
|
||||
|
||||
stats["reclassification_details"].append({
|
||||
"element_id": element.get("element_id"),
|
||||
"reason": result.reason,
|
||||
"metrics": result.metrics
|
||||
})
|
||||
|
||||
logger.info(
|
||||
f"Reclassified table {element.get('element_id')} as TEXT: {result.reason}"
|
||||
)
|
||||
|
||||
# Re-sort by reading order (y0 then x0)
|
||||
filtered_elements = self._sort_by_reading_order(filtered_elements)
|
||||
|
||||
return filtered_elements, stats
|
||||
|
||||
def _sort_by_reading_order(
|
||||
self,
|
||||
elements: List[Dict[str, Any]]
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""Sort elements by reading order (top-to-bottom, left-to-right)."""
|
||||
def sort_key(elem):
|
||||
bbox = elem.get("bbox", [0, 0, 0, 0])
|
||||
if isinstance(bbox, dict):
|
||||
y0 = bbox.get("y0", 0)
|
||||
x0 = bbox.get("x0", 0)
|
||||
elif isinstance(bbox, list) and len(bbox) >= 2:
|
||||
x0, y0 = bbox[0], bbox[1]
|
||||
else:
|
||||
y0, x0 = 0, 0
|
||||
return (y0, x0)
|
||||
|
||||
return sorted(elements, key=sort_key)
|
||||
@@ -16,6 +16,7 @@ from app.models.unified_document import (
|
||||
DocumentElement, BoundingBox, ElementType, Dimensions
|
||||
)
|
||||
from app.core.config import settings
|
||||
from app.utils.bbox_utils import normalize_bbox as _normalize_bbox
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -49,32 +50,9 @@ class TextRegion:
|
||||
|
||||
@property
|
||||
def normalized_bbox(self) -> Tuple[float, float, float, float]:
|
||||
"""Get normalized bbox as (x0, y0, x1, y1)."""
|
||||
if not self.bbox:
|
||||
return (0, 0, 0, 0)
|
||||
|
||||
# Check if bbox is nested list format [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
|
||||
# This is common PaddleOCR polygon format
|
||||
if len(self.bbox) >= 1 and isinstance(self.bbox[0], (list, tuple)):
|
||||
# Nested format: extract all x and y coordinates
|
||||
xs = [pt[0] for pt in self.bbox if len(pt) >= 2]
|
||||
ys = [pt[1] for pt in self.bbox if len(pt) >= 2]
|
||||
if xs and ys:
|
||||
return (min(xs), min(ys), max(xs), max(ys))
|
||||
return (0, 0, 0, 0)
|
||||
|
||||
# Flat format
|
||||
if len(self.bbox) == 4:
|
||||
# Simple [x0, y0, x1, y1] format
|
||||
return (float(self.bbox[0]), float(self.bbox[1]),
|
||||
float(self.bbox[2]), float(self.bbox[3]))
|
||||
elif len(self.bbox) >= 8:
|
||||
# Flat polygon format: [x1, y1, x2, y2, x3, y3, x4, y4]
|
||||
xs = [self.bbox[i] for i in range(0, len(self.bbox), 2)]
|
||||
ys = [self.bbox[i] for i in range(1, len(self.bbox), 2)]
|
||||
return (min(xs), min(ys), max(xs), max(ys))
|
||||
|
||||
return (0, 0, 0, 0)
|
||||
"""Get normalized bbox as (x0, y0, x1, y1). Uses shared bbox utility."""
|
||||
result = _normalize_bbox(self.bbox)
|
||||
return result if result else (0, 0, 0, 0)
|
||||
|
||||
@property
|
||||
def center(self) -> Tuple[float, float]:
|
||||
@@ -171,10 +149,6 @@ class GapFillingService:
|
||||
settings, 'gap_filling_enabled', True
|
||||
)
|
||||
|
||||
# Legacy compatibility
|
||||
self.iou_threshold = getattr(settings, 'gap_filling_iou_threshold', 0.15)
|
||||
self.dedup_iou_threshold = getattr(settings, 'gap_filling_dedup_iou_threshold', 0.5)
|
||||
|
||||
def should_activate(
|
||||
self,
|
||||
raw_ocr_regions: List[TextRegion],
|
||||
|
||||
@@ -10,6 +10,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
from datetime import datetime
|
||||
import uuid
|
||||
import gc # For garbage collection
|
||||
import warnings # For suppressing PaddleX deprecation warnings
|
||||
|
||||
from paddleocr import PaddleOCR, PPStructureV3
|
||||
from PIL import Image
|
||||
@@ -34,7 +35,21 @@ from app.services.layout_preprocessing_service import (
|
||||
get_layout_preprocessing_service,
|
||||
LayoutPreprocessingService,
|
||||
)
|
||||
from app.schemas.task import PreprocessingModeEnum, PreprocessingConfig, TableDetectionConfig
|
||||
from app.schemas.task import PreprocessingModeEnum, PreprocessingConfig
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class TableDetectionConfig:
|
||||
"""Internal table detection configuration for OCR service.
|
||||
|
||||
Note: This was previously in app.schemas.task but is now internal to OCR service
|
||||
as frontend no longer configures these options.
|
||||
"""
|
||||
enable_wired_table: bool = True
|
||||
enable_wireless_table: bool = True
|
||||
enable_region_detection: bool = True
|
||||
|
||||
|
||||
# Import dual-track components
|
||||
try:
|
||||
@@ -798,7 +813,12 @@ class OCRService:
|
||||
if textline_ori_model:
|
||||
pp_kwargs['textline_orientation_model_name'] = textline_ori_model
|
||||
|
||||
self.structure_engine = PPStructureV3(**pp_kwargs)
|
||||
# Suppress DeprecationWarning during PPStructureV3 initialization
|
||||
# Workaround for PaddleX bug: it incorrectly treats Python's datetime.utcnow()
|
||||
# deprecation warning as a model loading error in PP-Chart2Table
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
self.structure_engine = PPStructureV3(**pp_kwargs)
|
||||
|
||||
# Track model loading for cache management
|
||||
self._model_last_used['structure'] = datetime.now()
|
||||
@@ -881,7 +901,10 @@ class OCRService:
|
||||
if settings.textline_orientation_model_name:
|
||||
cpu_kwargs['textline_orientation_model_name'] = settings.textline_orientation_model_name
|
||||
|
||||
self.structure_engine = PPStructureV3(**cpu_kwargs)
|
||||
# Suppress DeprecationWarning during PPStructureV3 initialization (CPU fallback)
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
self.structure_engine = PPStructureV3(**cpu_kwargs)
|
||||
self._current_layout_model = layout_model # Track current model for recreation check
|
||||
# Track table detection config for recreation check
|
||||
if table_detection_config:
|
||||
@@ -1429,6 +1452,22 @@ class OCRService:
|
||||
raw_ocr_regions=text_regions # For table content rebuilding
|
||||
)
|
||||
|
||||
# Get detected rotation from layout analysis (default: "0" = no rotation)
|
||||
detected_rotation = "0"
|
||||
if layout_data:
|
||||
detected_rotation = layout_data.get('detected_rotation', '0')
|
||||
|
||||
# Adjust page dimensions based on detected rotation
|
||||
# When rotation is 90° or 270°, the page orientation changes (portrait <-> landscape)
|
||||
# PP-StructureV3 returns coordinates based on the rotated image, so we need to swap dimensions
|
||||
if detected_rotation in ['90', '270']:
|
||||
original_width, original_height = ocr_width, ocr_height
|
||||
ocr_width, ocr_height = original_height, original_width
|
||||
logger.info(
|
||||
f"Page dimensions adjusted for {detected_rotation}° rotation: "
|
||||
f"{original_width}x{original_height} -> {ocr_width}x{ocr_height}"
|
||||
)
|
||||
|
||||
# Generate Markdown
|
||||
markdown_content = self.generate_markdown(text_regions, layout_data)
|
||||
|
||||
@@ -1450,7 +1489,8 @@ class OCRService:
|
||||
'ocr_dimensions': {
|
||||
'width': ocr_width,
|
||||
'height': ocr_height
|
||||
}
|
||||
},
|
||||
'detected_rotation': detected_rotation # Document orientation: "0", "90", "180", "270"
|
||||
}
|
||||
|
||||
# If layout data is enhanced, add enhanced results for converter
|
||||
@@ -1705,7 +1745,8 @@ class OCRService:
|
||||
'total_elements': result['total_elements'],
|
||||
'reading_order': result['reading_order'],
|
||||
'element_types': result.get('element_types', {}),
|
||||
'enhanced': True
|
||||
'enhanced': True,
|
||||
'detected_rotation': result.get('detected_rotation', '0') # Document orientation
|
||||
}
|
||||
|
||||
# Extract images metadata
|
||||
|
||||
@@ -1,507 +0,0 @@
|
||||
"""
|
||||
Tool_OCR - PDF Generator Service
|
||||
Converts Markdown to layout-preserved PDFs using Pandoc + WeasyPrint
|
||||
"""
|
||||
|
||||
import logging
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from typing import Optional, Dict
|
||||
from datetime import datetime
|
||||
|
||||
from weasyprint import HTML, CSS
|
||||
from markdown import markdown
|
||||
|
||||
from app.core.config import settings
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PDFGenerationError(Exception):
|
||||
"""Exception raised when PDF generation fails"""
|
||||
pass
|
||||
|
||||
|
||||
class PDFGenerator:
|
||||
"""
|
||||
PDF generation service with layout preservation
|
||||
|
||||
Supports two generation methods:
|
||||
1. Pandoc (preferred): Markdown → HTML → PDF via pandoc command
|
||||
2. WeasyPrint (fallback): Direct Python-based HTML → PDF conversion
|
||||
"""
|
||||
|
||||
# Default CSS template for layout preservation
|
||||
DEFAULT_CSS = """
|
||||
@page {
|
||||
size: A4;
|
||||
margin: 2cm;
|
||||
}
|
||||
|
||||
body {
|
||||
font-family: "Noto Sans CJK SC", "Noto Sans CJK TC", "Microsoft YaHei", "SimSun", sans-serif;
|
||||
font-size: 11pt;
|
||||
line-height: 1.6;
|
||||
color: #333;
|
||||
}
|
||||
|
||||
h1 {
|
||||
font-size: 24pt;
|
||||
font-weight: bold;
|
||||
margin-top: 0;
|
||||
margin-bottom: 12pt;
|
||||
color: #000;
|
||||
page-break-after: avoid;
|
||||
}
|
||||
|
||||
h2 {
|
||||
font-size: 18pt;
|
||||
font-weight: bold;
|
||||
margin-top: 18pt;
|
||||
margin-bottom: 10pt;
|
||||
color: #000;
|
||||
page-break-after: avoid;
|
||||
}
|
||||
|
||||
h3 {
|
||||
font-size: 14pt;
|
||||
font-weight: bold;
|
||||
margin-top: 14pt;
|
||||
margin-bottom: 8pt;
|
||||
color: #000;
|
||||
page-break-after: avoid;
|
||||
}
|
||||
|
||||
p {
|
||||
margin: 0 0 10pt 0;
|
||||
text-align: justify;
|
||||
}
|
||||
|
||||
table {
|
||||
width: 100%;
|
||||
border-collapse: collapse;
|
||||
margin: 12pt 0;
|
||||
page-break-inside: avoid;
|
||||
}
|
||||
|
||||
table th {
|
||||
background-color: #f0f0f0;
|
||||
border: 1px solid #ccc;
|
||||
padding: 8pt;
|
||||
text-align: left;
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
table td {
|
||||
border: 1px solid #ccc;
|
||||
padding: 8pt;
|
||||
text-align: left;
|
||||
}
|
||||
|
||||
code {
|
||||
font-family: "Courier New", monospace;
|
||||
font-size: 10pt;
|
||||
background-color: #f5f5f5;
|
||||
padding: 2pt 4pt;
|
||||
border-radius: 3px;
|
||||
}
|
||||
|
||||
pre {
|
||||
background-color: #f5f5f5;
|
||||
border: 1px solid #ddd;
|
||||
border-radius: 5px;
|
||||
padding: 10pt;
|
||||
overflow-x: auto;
|
||||
page-break-inside: avoid;
|
||||
}
|
||||
|
||||
pre code {
|
||||
background-color: transparent;
|
||||
padding: 0;
|
||||
}
|
||||
|
||||
img {
|
||||
max-width: 100%;
|
||||
height: auto;
|
||||
display: block;
|
||||
margin: 12pt auto;
|
||||
page-break-inside: avoid;
|
||||
}
|
||||
|
||||
blockquote {
|
||||
border-left: 4px solid #ddd;
|
||||
padding-left: 12pt;
|
||||
margin: 12pt 0;
|
||||
color: #666;
|
||||
font-style: italic;
|
||||
}
|
||||
|
||||
ul, ol {
|
||||
margin: 10pt 0;
|
||||
padding-left: 20pt;
|
||||
}
|
||||
|
||||
li {
|
||||
margin: 5pt 0;
|
||||
}
|
||||
|
||||
hr {
|
||||
border: none;
|
||||
border-top: 1px solid #ccc;
|
||||
margin: 20pt 0;
|
||||
}
|
||||
|
||||
.page-break {
|
||||
page-break-after: always;
|
||||
}
|
||||
"""
|
||||
|
||||
# Academic paper template
|
||||
ACADEMIC_CSS = """
|
||||
@page {
|
||||
size: A4;
|
||||
margin: 2.5cm;
|
||||
}
|
||||
|
||||
body {
|
||||
font-family: "Times New Roman", "Noto Serif CJK SC", serif;
|
||||
font-size: 12pt;
|
||||
line-height: 1.8;
|
||||
color: #000;
|
||||
}
|
||||
|
||||
h1 {
|
||||
font-size: 20pt;
|
||||
text-align: center;
|
||||
margin-bottom: 24pt;
|
||||
page-break-after: avoid;
|
||||
}
|
||||
|
||||
h2 {
|
||||
font-size: 16pt;
|
||||
margin-top: 20pt;
|
||||
margin-bottom: 12pt;
|
||||
page-break-after: avoid;
|
||||
}
|
||||
|
||||
h3 {
|
||||
font-size: 14pt;
|
||||
margin-top: 16pt;
|
||||
margin-bottom: 10pt;
|
||||
page-break-after: avoid;
|
||||
}
|
||||
|
||||
p {
|
||||
text-indent: 2em;
|
||||
text-align: justify;
|
||||
margin: 0 0 12pt 0;
|
||||
}
|
||||
|
||||
table {
|
||||
width: 100%;
|
||||
border-collapse: collapse;
|
||||
margin: 16pt auto;
|
||||
page-break-inside: avoid;
|
||||
}
|
||||
|
||||
table caption {
|
||||
font-weight: bold;
|
||||
margin-bottom: 8pt;
|
||||
}
|
||||
"""
|
||||
|
||||
# Business report template
|
||||
BUSINESS_CSS = """
|
||||
@page {
|
||||
size: A4;
|
||||
margin: 2cm 2.5cm;
|
||||
}
|
||||
|
||||
body {
|
||||
font-family: "Arial", "Noto Sans CJK SC", sans-serif;
|
||||
font-size: 11pt;
|
||||
line-height: 1.5;
|
||||
color: #333;
|
||||
}
|
||||
|
||||
h1 {
|
||||
font-size: 22pt;
|
||||
color: #0066cc;
|
||||
border-bottom: 3px solid #0066cc;
|
||||
padding-bottom: 8pt;
|
||||
margin-bottom: 20pt;
|
||||
page-break-after: avoid;
|
||||
}
|
||||
|
||||
h2 {
|
||||
font-size: 16pt;
|
||||
color: #0066cc;
|
||||
margin-top: 20pt;
|
||||
margin-bottom: 12pt;
|
||||
page-break-after: avoid;
|
||||
}
|
||||
|
||||
table {
|
||||
width: 100%;
|
||||
border-collapse: collapse;
|
||||
margin: 16pt 0;
|
||||
}
|
||||
|
||||
table th {
|
||||
background-color: #0066cc;
|
||||
color: white;
|
||||
padding: 10pt;
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
table td {
|
||||
border: 1px solid #ddd;
|
||||
padding: 10pt;
|
||||
}
|
||||
|
||||
table tr:nth-child(even) {
|
||||
background-color: #f9f9f9;
|
||||
}
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize PDF generator"""
|
||||
self.css_templates = {
|
||||
"default": self.DEFAULT_CSS,
|
||||
"academic": self.ACADEMIC_CSS,
|
||||
"business": self.BUSINESS_CSS,
|
||||
}
|
||||
|
||||
def check_pandoc_available(self) -> bool:
|
||||
"""
|
||||
Check if Pandoc is installed and available
|
||||
|
||||
Returns:
|
||||
bool: True if pandoc is available, False otherwise
|
||||
"""
|
||||
try:
|
||||
result = subprocess.run(
|
||||
["pandoc", "--version"],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=5
|
||||
)
|
||||
return result.returncode == 0
|
||||
except (subprocess.TimeoutExpired, FileNotFoundError):
|
||||
logger.warning("Pandoc not found or timed out")
|
||||
return False
|
||||
|
||||
def generate_pdf_pandoc(
|
||||
self,
|
||||
markdown_path: Path,
|
||||
output_path: Path,
|
||||
css_template: str = "default",
|
||||
metadata: Optional[Dict] = None
|
||||
) -> Path:
|
||||
"""
|
||||
Generate PDF using Pandoc (preferred method)
|
||||
|
||||
Args:
|
||||
markdown_path: Path to input Markdown file
|
||||
output_path: Path to output PDF file
|
||||
css_template: CSS template name or custom CSS string
|
||||
metadata: Optional metadata dict (title, author, date)
|
||||
|
||||
Returns:
|
||||
Path: Path to generated PDF file
|
||||
|
||||
Raises:
|
||||
PDFGenerationError: If PDF generation fails
|
||||
"""
|
||||
try:
|
||||
# Create temporary CSS file
|
||||
css_content = self.css_templates.get(css_template, css_template)
|
||||
css_file = output_path.parent / f"temp_{datetime.now().timestamp()}.css"
|
||||
css_file.write_text(css_content, encoding="utf-8")
|
||||
|
||||
# Build pandoc command
|
||||
pandoc_cmd = [
|
||||
"pandoc",
|
||||
str(markdown_path),
|
||||
"-o", str(output_path),
|
||||
"--pdf-engine=weasyprint",
|
||||
"--css", str(css_file),
|
||||
"--standalone",
|
||||
"--from=markdown+tables+fenced_code_blocks+footnotes",
|
||||
]
|
||||
|
||||
# Add metadata if provided
|
||||
if metadata:
|
||||
if metadata.get("title"):
|
||||
pandoc_cmd.extend(["--metadata", f"title={metadata['title']}"])
|
||||
if metadata.get("author"):
|
||||
pandoc_cmd.extend(["--metadata", f"author={metadata['author']}"])
|
||||
if metadata.get("date"):
|
||||
pandoc_cmd.extend(["--metadata", f"date={metadata['date']}"])
|
||||
|
||||
# Execute pandoc
|
||||
logger.info(f"Executing pandoc: {' '.join(pandoc_cmd)}")
|
||||
result = subprocess.run(
|
||||
pandoc_cmd,
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=60 # 60 second timeout for large documents
|
||||
)
|
||||
|
||||
# Clean up temporary CSS file
|
||||
css_file.unlink(missing_ok=True)
|
||||
|
||||
if result.returncode != 0:
|
||||
error_msg = f"Pandoc failed: {result.stderr}"
|
||||
logger.error(error_msg)
|
||||
raise PDFGenerationError(error_msg)
|
||||
|
||||
if not output_path.exists():
|
||||
raise PDFGenerationError(f"PDF file not created: {output_path}")
|
||||
|
||||
logger.info(f"PDF generated successfully via Pandoc: {output_path}")
|
||||
return output_path
|
||||
|
||||
except subprocess.TimeoutExpired:
|
||||
css_file.unlink(missing_ok=True)
|
||||
raise PDFGenerationError("Pandoc execution timed out")
|
||||
except Exception as e:
|
||||
css_file.unlink(missing_ok=True)
|
||||
raise PDFGenerationError(f"Pandoc PDF generation failed: {str(e)}")
|
||||
|
||||
def generate_pdf_weasyprint(
|
||||
self,
|
||||
markdown_path: Path,
|
||||
output_path: Path,
|
||||
css_template: str = "default",
|
||||
metadata: Optional[Dict] = None
|
||||
) -> Path:
|
||||
"""
|
||||
Generate PDF using WeasyPrint directly (fallback method)
|
||||
|
||||
Args:
|
||||
markdown_path: Path to input Markdown file
|
||||
output_path: Path to output PDF file
|
||||
css_template: CSS template name or custom CSS string
|
||||
metadata: Optional metadata dict (title, author, date)
|
||||
|
||||
Returns:
|
||||
Path: Path to generated PDF file
|
||||
|
||||
Raises:
|
||||
PDFGenerationError: If PDF generation fails
|
||||
"""
|
||||
try:
|
||||
# Read Markdown content
|
||||
markdown_content = markdown_path.read_text(encoding="utf-8")
|
||||
|
||||
# Convert Markdown to HTML
|
||||
html_content = markdown(
|
||||
markdown_content,
|
||||
extensions=[
|
||||
'tables',
|
||||
'fenced_code',
|
||||
'codehilite',
|
||||
'nl2br',
|
||||
'sane_lists',
|
||||
]
|
||||
)
|
||||
|
||||
# Wrap HTML with proper structure
|
||||
title = metadata.get("title", markdown_path.stem) if metadata else markdown_path.stem
|
||||
full_html = f"""
|
||||
<!DOCTYPE html>
|
||||
<html lang="zh-CN">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<title>{title}</title>
|
||||
</head>
|
||||
<body>
|
||||
{html_content}
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
|
||||
# Get CSS content
|
||||
css_content = self.css_templates.get(css_template, css_template)
|
||||
|
||||
# Generate PDF
|
||||
logger.info(f"Generating PDF via WeasyPrint: {output_path}")
|
||||
html = HTML(string=full_html, base_url=str(markdown_path.parent))
|
||||
css = CSS(string=css_content)
|
||||
html.write_pdf(str(output_path), stylesheets=[css])
|
||||
|
||||
if not output_path.exists():
|
||||
raise PDFGenerationError(f"PDF file not created: {output_path}")
|
||||
|
||||
logger.info(f"PDF generated successfully via WeasyPrint: {output_path}")
|
||||
return output_path
|
||||
|
||||
except Exception as e:
|
||||
raise PDFGenerationError(f"WeasyPrint PDF generation failed: {str(e)}")
|
||||
|
||||
def generate_pdf(
|
||||
self,
|
||||
markdown_path: Path,
|
||||
output_path: Path,
|
||||
css_template: str = "default",
|
||||
metadata: Optional[Dict] = None,
|
||||
prefer_pandoc: bool = True
|
||||
) -> Path:
|
||||
"""
|
||||
Generate PDF from Markdown with automatic fallback
|
||||
|
||||
Args:
|
||||
markdown_path: Path to input Markdown file
|
||||
output_path: Path to output PDF file
|
||||
css_template: CSS template name ("default", "academic", "business") or custom CSS
|
||||
metadata: Optional metadata dict (title, author, date)
|
||||
prefer_pandoc: Use Pandoc if available, fallback to WeasyPrint
|
||||
|
||||
Returns:
|
||||
Path: Path to generated PDF file
|
||||
|
||||
Raises:
|
||||
PDFGenerationError: If both methods fail
|
||||
"""
|
||||
if not markdown_path.exists():
|
||||
raise PDFGenerationError(f"Markdown file not found: {markdown_path}")
|
||||
|
||||
# Ensure output directory exists
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Try Pandoc first if preferred and available
|
||||
if prefer_pandoc and self.check_pandoc_available():
|
||||
try:
|
||||
return self.generate_pdf_pandoc(markdown_path, output_path, css_template, metadata)
|
||||
except PDFGenerationError as e:
|
||||
logger.warning(f"Pandoc failed, falling back to WeasyPrint: {e}")
|
||||
# Fall through to WeasyPrint
|
||||
|
||||
# Use WeasyPrint (fallback or direct)
|
||||
return self.generate_pdf_weasyprint(markdown_path, output_path, css_template, metadata)
|
||||
|
||||
def get_available_templates(self) -> Dict[str, str]:
|
||||
"""
|
||||
Get list of available CSS templates
|
||||
|
||||
Returns:
|
||||
Dict mapping template names to descriptions
|
||||
"""
|
||||
return {
|
||||
"default": "通用排版模板,適合大多數文檔",
|
||||
"academic": "學術論文模板,適合研究報告",
|
||||
"business": "商業報告模板,適合企業文檔",
|
||||
}
|
||||
|
||||
def save_custom_template(self, template_name: str, css_content: str) -> None:
|
||||
"""
|
||||
Save a custom CSS template
|
||||
|
||||
Args:
|
||||
template_name: Template name
|
||||
css_content: CSS content
|
||||
"""
|
||||
self.css_templates[template_name] = css_content
|
||||
logger.info(f"Custom CSS template saved: {template_name}")
|
||||
@@ -25,6 +25,7 @@ from PIL import Image
|
||||
from html.parser import HTMLParser
|
||||
|
||||
from app.core.config import settings
|
||||
from app.utils.bbox_utils import normalize_bbox
|
||||
|
||||
# Import table column corrector for column alignment fix
|
||||
try:
|
||||
@@ -1258,8 +1259,44 @@ class PDFGeneratorService:
|
||||
else:
|
||||
logger.warning(f"Image file not found: {saved_path}")
|
||||
|
||||
# Also check for embedded images in table elements
|
||||
# These are images detected inside table regions by PP-Structure
|
||||
elif elem_type == 'table':
|
||||
metadata = elem.metadata if hasattr(elem, 'metadata') else elem.get('metadata', {})
|
||||
embedded_images = metadata.get('embedded_images', []) if metadata else []
|
||||
for emb_img in embedded_images:
|
||||
emb_bbox = emb_img.get('bbox', [])
|
||||
if emb_bbox and len(emb_bbox) >= 4:
|
||||
ex0, ey0, ex1, ey1 = emb_bbox[0], emb_bbox[1], emb_bbox[2], emb_bbox[3]
|
||||
exclusion_zones.append((ex0, ey0, ex1, ey1))
|
||||
|
||||
# Also render the embedded image
|
||||
saved_path = emb_img.get('saved_path', '')
|
||||
if saved_path:
|
||||
image_path = result_dir / saved_path
|
||||
if not image_path.exists():
|
||||
image_path = result_dir / Path(saved_path).name
|
||||
if image_path.exists():
|
||||
try:
|
||||
pdf_x = ex0
|
||||
pdf_y = current_height - ey1
|
||||
img_width = ex1 - ex0
|
||||
img_height = ey1 - ey0
|
||||
pdf_canvas.drawImage(
|
||||
str(image_path),
|
||||
pdf_x, pdf_y,
|
||||
width=img_width,
|
||||
height=img_height,
|
||||
preserveAspectRatio=True,
|
||||
mask='auto'
|
||||
)
|
||||
image_elements_rendered += 1
|
||||
logger.debug(f"Rendered embedded image: {saved_path} at ({pdf_x:.1f}, {pdf_y:.1f})")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to render embedded image {saved_path}: {e}")
|
||||
|
||||
if image_elements_rendered > 0:
|
||||
logger.info(f"Rendered {image_elements_rendered} image elements (figures/charts/seals/formulas)")
|
||||
logger.info(f"Rendered {image_elements_rendered} image elements (figures/charts/seals/formulas/embedded)")
|
||||
|
||||
if exclusion_zones:
|
||||
logger.info(f"Collected {len(exclusion_zones)} exclusion zones for text avoidance")
|
||||
@@ -1857,38 +1894,8 @@ class PDFGeneratorService:
|
||||
return None
|
||||
|
||||
def _get_bbox_coords(self, bbox: Union[Dict, List[List[float]], List[float]]) -> Optional[Tuple[float, float, float, float]]:
|
||||
"""將任何 bbox 格式 (dict, 多邊形或 [x1,y1,x2,y2]) 轉換為 [x_min, y_min, x_max, y_max]"""
|
||||
try:
|
||||
if bbox is None:
|
||||
return None
|
||||
|
||||
# Dict format from UnifiedDocument: {"x0": ..., "y0": ..., "x1": ..., "y1": ...}
|
||||
if isinstance(bbox, dict):
|
||||
if 'x0' in bbox and 'y0' in bbox and 'x1' in bbox and 'y1' in bbox:
|
||||
return float(bbox['x0']), float(bbox['y0']), float(bbox['x1']), float(bbox['y1'])
|
||||
else:
|
||||
logger.warning(f"Dict bbox 缺少必要欄位: {bbox}")
|
||||
return None
|
||||
|
||||
if not isinstance(bbox, (list, tuple)) or len(bbox) < 4:
|
||||
return None
|
||||
|
||||
if isinstance(bbox[0], (list, tuple)):
|
||||
# 處理多邊形 [[x, y], ...]
|
||||
x_coords = [p[0] for p in bbox if isinstance(p, (list, tuple)) and len(p) >= 2]
|
||||
y_coords = [p[1] for p in bbox if isinstance(p, (list, tuple)) and len(p) >= 2]
|
||||
if not x_coords or not y_coords:
|
||||
return None
|
||||
return min(x_coords), min(y_coords), max(x_coords), max(y_coords)
|
||||
elif isinstance(bbox[0], (int, float)) and len(bbox) == 4:
|
||||
# 處理 [x1, y1, x2, y2]
|
||||
return float(bbox[0]), float(bbox[1]), float(bbox[2]), float(bbox[3])
|
||||
else:
|
||||
logger.warning(f"未知的 bbox 格式: {bbox}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"解析 bbox {bbox} 時出錯: {e}")
|
||||
return None
|
||||
"""將任何 bbox 格式 (dict, 多邊形或 [x1,y1,x2,y2]) 轉換為 [x_min, y_min, x_max, y_max]. Uses shared bbox utility."""
|
||||
return normalize_bbox(bbox)
|
||||
|
||||
def _is_bbox_inside(self, inner_bbox_data: Dict, outer_bbox_data: Dict, tolerance: float = 5.0) -> bool:
|
||||
"""
|
||||
@@ -2463,29 +2470,7 @@ class PDFGeneratorService:
|
||||
else:
|
||||
logger.info("[TABLE] cell_boxes rendering failed, using ReportLab Table with borders")
|
||||
else:
|
||||
# Grid mismatch: try cellboxes-first rendering if enabled
|
||||
if settings.table_rendering_prefer_cellboxes:
|
||||
logger.info(f"[TABLE] Grid mismatch, trying cellboxes-first rendering")
|
||||
from app.services.pdf_table_renderer import TableRenderer, TableRenderConfig
|
||||
renderer = TableRenderer(TableRenderConfig())
|
||||
success = renderer.render_from_cellboxes_grid(
|
||||
pdf_canvas,
|
||||
cell_boxes,
|
||||
html_content,
|
||||
tuple(raw_bbox),
|
||||
page_height,
|
||||
scale_w,
|
||||
scale_h,
|
||||
row_threshold=settings.table_cellboxes_row_threshold,
|
||||
col_threshold=settings.table_cellboxes_col_threshold
|
||||
)
|
||||
if success:
|
||||
logger.info("[TABLE] cellboxes-first rendering succeeded, skipping HTML-based rendering")
|
||||
return # Table fully rendered, exit early
|
||||
else:
|
||||
logger.info("[TABLE] cellboxes-first rendering failed, falling back to HTML-based")
|
||||
else:
|
||||
logger.info(f"[TABLE] Grid validation failed (mismatch), using ReportLab Table with borders")
|
||||
logger.info(f"[TABLE] Grid validation failed (mismatch), using ReportLab Table with borders")
|
||||
else:
|
||||
logger.info("[TABLE] No valid bbox for grid validation, using ReportLab Table with borders")
|
||||
|
||||
@@ -2942,47 +2927,16 @@ class PDFGeneratorService:
|
||||
"""
|
||||
Check the quality of cell_boxes to determine rendering strategy.
|
||||
|
||||
Always returns 'good' to use pure PP-Structure output (quality check removed).
|
||||
|
||||
Args:
|
||||
cell_boxes: List of cell bounding boxes
|
||||
element_id: Optional element ID for logging
|
||||
|
||||
Returns:
|
||||
'good' if cell_boxes form a proper grid, 'bad' otherwise
|
||||
'good' - always use cell_boxes rendering
|
||||
"""
|
||||
# If quality check is disabled, always return 'good' to use pure PP-Structure output
|
||||
if not settings.table_quality_check_enabled:
|
||||
logger.debug(f"[TABLE QUALITY] {element_id}: good - quality check disabled (pure PP-Structure mode)")
|
||||
return 'good'
|
||||
|
||||
if not cell_boxes or len(cell_boxes) < 2:
|
||||
logger.debug(f"[TABLE QUALITY] {element_id}: bad - too few cells ({len(cell_boxes) if cell_boxes else 0})")
|
||||
return 'bad' # No cell_boxes or too few
|
||||
|
||||
# Count overlapping cell pairs
|
||||
overlap_count = 0
|
||||
for i, box1 in enumerate(cell_boxes):
|
||||
for j, box2 in enumerate(cell_boxes):
|
||||
if i >= j:
|
||||
continue
|
||||
if not isinstance(box1, (list, tuple)) or len(box1) < 4:
|
||||
continue
|
||||
if not isinstance(box2, (list, tuple)) or len(box2) < 4:
|
||||
continue
|
||||
x_overlap = box1[0] < box2[2] and box1[2] > box2[0]
|
||||
y_overlap = box1[1] < box2[3] and box1[3] > box2[1]
|
||||
if x_overlap and y_overlap:
|
||||
overlap_count += 1
|
||||
|
||||
total_pairs = len(cell_boxes) * (len(cell_boxes) - 1) // 2
|
||||
overlap_ratio = overlap_count / total_pairs if total_pairs > 0 else 0
|
||||
|
||||
# Relaxed threshold: 20% overlap instead of 10% to allow more tables through
|
||||
# This is because PP-StructureV3's cell detection sometimes has slight overlaps
|
||||
if overlap_ratio > 0.20:
|
||||
logger.info(f"[TABLE QUALITY] {element_id}: bad - overlap ratio {overlap_ratio:.2%} > 20%")
|
||||
return 'bad'
|
||||
|
||||
logger.debug(f"[TABLE QUALITY] {element_id}: good - {len(cell_boxes)} cells, overlap {overlap_ratio:.2%}")
|
||||
logger.debug(f"[TABLE QUALITY] {element_id}: good - pure PP-Structure mode")
|
||||
return 'good'
|
||||
|
||||
def _draw_table_with_cell_boxes(
|
||||
|
||||
@@ -15,6 +15,8 @@ from datetime import datetime
|
||||
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
from app.utils.bbox_utils import normalize_bbox
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Color palette for different element types (RGB)
|
||||
@@ -238,42 +240,8 @@ class PPStructureDebug:
|
||||
draw.text((legend_x + 18, legend_y), "raw_ocr", fill=(0, 0, 0), font=font)
|
||||
|
||||
def _normalize_bbox(self, bbox: Any) -> Optional[Tuple[float, float, float, float]]:
|
||||
"""Normalize bbox to (x0, y0, x1, y1) format."""
|
||||
if not bbox:
|
||||
return None
|
||||
|
||||
try:
|
||||
# Handle nested list format [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
|
||||
if isinstance(bbox, (list, tuple)) and len(bbox) >= 1:
|
||||
if isinstance(bbox[0], (list, tuple)):
|
||||
xs = [pt[0] for pt in bbox if len(pt) >= 2]
|
||||
ys = [pt[1] for pt in bbox if len(pt) >= 2]
|
||||
if xs and ys:
|
||||
return (min(xs), min(ys), max(xs), max(ys))
|
||||
|
||||
# Handle flat list [x0, y0, x1, y1]
|
||||
if isinstance(bbox, (list, tuple)) and len(bbox) == 4:
|
||||
return (float(bbox[0]), float(bbox[1]), float(bbox[2]), float(bbox[3]))
|
||||
|
||||
# Handle flat polygon [x1, y1, x2, y2, ...]
|
||||
if isinstance(bbox, (list, tuple)) and len(bbox) >= 8:
|
||||
xs = [bbox[i] for i in range(0, len(bbox), 2)]
|
||||
ys = [bbox[i] for i in range(1, len(bbox), 2)]
|
||||
return (min(xs), min(ys), max(xs), max(ys))
|
||||
|
||||
# Handle dict format
|
||||
if isinstance(bbox, dict):
|
||||
return (
|
||||
float(bbox.get('x0', bbox.get('x_min', 0))),
|
||||
float(bbox.get('y0', bbox.get('y_min', 0))),
|
||||
float(bbox.get('x1', bbox.get('x_max', 0))),
|
||||
float(bbox.get('y1', bbox.get('y_max', 0)))
|
||||
)
|
||||
|
||||
except (TypeError, ValueError, IndexError) as e:
|
||||
logger.warning(f"Failed to normalize bbox {bbox}: {e}")
|
||||
|
||||
return None
|
||||
"""Normalize bbox to (x0, y0, x1, y1) format. Uses shared bbox utility."""
|
||||
return normalize_bbox(bbox)
|
||||
|
||||
def _generate_summary(
|
||||
self,
|
||||
|
||||
@@ -28,11 +28,9 @@ from PIL import Image
|
||||
import numpy as np
|
||||
import cv2
|
||||
from app.models.unified_document import ElementType
|
||||
from app.services.cell_validation_engine import CellValidationEngine, CellValidationConfig
|
||||
from app.core.config import settings
|
||||
from app.services.memory_manager import prediction_context
|
||||
from app.services.cv_table_detector import CVTableDetector
|
||||
from app.services.table_content_rebuilder import TableContentRebuilder
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -159,6 +157,7 @@ class PPStructureEnhanced:
|
||||
all_images = []
|
||||
all_tables = []
|
||||
visualization_dir = None
|
||||
detected_rotation = "0" # Default: no rotation
|
||||
|
||||
# Process each page result
|
||||
for page_idx, page_result in enumerate(results):
|
||||
@@ -247,6 +246,56 @@ class PPStructureEnhanced:
|
||||
ocr_count = len(overall_ocr_res.get('rec_texts', []))
|
||||
logger.info(f"Found overall_ocr_res with {ocr_count} text regions")
|
||||
|
||||
# Extract doc_preprocessor_res for orientation detection
|
||||
# When use_doc_orientation_classify=True, this contains the detected rotation angle
|
||||
# Note: doc_preprocessor_res may be at top-level result_json OR inside 'res'
|
||||
doc_preprocessor_res = None
|
||||
|
||||
# First, check result_dict (might be result_json['res'])
|
||||
if 'doc_preprocessor_res' in result_dict:
|
||||
doc_preprocessor_res = result_dict['doc_preprocessor_res']
|
||||
logger.info("Found doc_preprocessor_res in result_dict")
|
||||
# Also check top-level result_json if it exists and differs from result_dict
|
||||
elif hasattr(page_result, 'json') and isinstance(page_result.json, dict):
|
||||
if 'doc_preprocessor_res' in page_result.json:
|
||||
doc_preprocessor_res = page_result.json['doc_preprocessor_res']
|
||||
logger.info("Found doc_preprocessor_res at top-level result_json")
|
||||
|
||||
# Debug: Log available keys to help diagnose structure issues
|
||||
if doc_preprocessor_res is None:
|
||||
logger.warning(f"doc_preprocessor_res NOT found. result_dict keys: {list(result_dict.keys()) if result_dict else 'None'}")
|
||||
if hasattr(page_result, 'json') and isinstance(page_result.json, dict):
|
||||
logger.warning(f"result_json keys: {list(page_result.json.keys())}")
|
||||
|
||||
if doc_preprocessor_res:
|
||||
# Debug: Log the complete structure of doc_preprocessor_res
|
||||
logger.info(f"doc_preprocessor_res keys: {list(doc_preprocessor_res.keys()) if isinstance(doc_preprocessor_res, dict) else type(doc_preprocessor_res)}")
|
||||
logger.info(f"doc_preprocessor_res content: {doc_preprocessor_res}")
|
||||
|
||||
# Try multiple possible key names for rotation info
|
||||
# PaddleOCR may use different structures depending on version
|
||||
label_names = doc_preprocessor_res.get('label_names', [])
|
||||
class_ids = doc_preprocessor_res.get('class_ids', [])
|
||||
labels = doc_preprocessor_res.get('labels', [])
|
||||
angle = doc_preprocessor_res.get('angle', None)
|
||||
|
||||
# Determine rotation from available data
|
||||
detected_rotation = "0"
|
||||
if label_names:
|
||||
detected_rotation = str(label_names[0])
|
||||
elif class_ids:
|
||||
# class_ids: 0=0°, 1=90°, 2=180°, 3=270°
|
||||
rotation_map = {0: "0", 1: "90", 2: "180", 3: "270"}
|
||||
detected_rotation = rotation_map.get(class_ids[0], "0")
|
||||
elif labels:
|
||||
detected_rotation = str(labels[0])
|
||||
elif angle is not None:
|
||||
detected_rotation = str(angle)
|
||||
|
||||
logger.info(f"Document orientation detected: {detected_rotation}° (label_names={label_names}, class_ids={class_ids}, labels={labels}, angle={angle})")
|
||||
else:
|
||||
detected_rotation = "0" # Default: no rotation
|
||||
|
||||
# Process parsing_res_list if found
|
||||
if parsing_res_list:
|
||||
elements = self._process_parsing_res_list(
|
||||
@@ -295,7 +344,8 @@ class PPStructureEnhanced:
|
||||
'tables': all_tables,
|
||||
'images': all_images,
|
||||
'element_types': self._count_element_types(all_elements),
|
||||
'has_parsing_res_list': parsing_res_list is not None
|
||||
'has_parsing_res_list': parsing_res_list is not None,
|
||||
'detected_rotation': detected_rotation # Document orientation: "0", "90", "180", "270"
|
||||
}
|
||||
|
||||
# Add visualization directory if available
|
||||
@@ -653,42 +703,6 @@ class PPStructureEnhanced:
|
||||
element['embedded_images'] = embedded_images
|
||||
logger.info(f"[TABLE] Embedded {len(embedded_images)} images into table")
|
||||
|
||||
# 4. Table content rebuilding from raw OCR regions
|
||||
# When cell_boxes have boundary issues, rebuild table content from raw OCR
|
||||
# Only if table_content_rebuilder is enabled (disabled by default as it's a patch behavior)
|
||||
logger.info(f"[TABLE] raw_ocr_regions available: {raw_ocr_regions is not None and len(raw_ocr_regions) if raw_ocr_regions else 0}")
|
||||
logger.info(f"[TABLE] cell_boxes available: {len(element.get('cell_boxes', []))}")
|
||||
if settings.table_content_rebuilder_enabled and raw_ocr_regions and element.get('cell_boxes'):
|
||||
rebuilder = TableContentRebuilder()
|
||||
should_rebuild, rebuild_reason = rebuilder.should_rebuild(
|
||||
element['cell_boxes'],
|
||||
bbox,
|
||||
element.get('html', '')
|
||||
)
|
||||
|
||||
if should_rebuild:
|
||||
logger.info(f"[TABLE] Triggering table rebuild: {rebuild_reason}")
|
||||
rebuilt_table, rebuild_stats = rebuilder.rebuild_table(
|
||||
cell_boxes=element['cell_boxes'],
|
||||
table_bbox=bbox,
|
||||
raw_ocr_regions=raw_ocr_regions,
|
||||
original_html=element.get('html', '')
|
||||
)
|
||||
|
||||
if rebuilt_table:
|
||||
# Update element with rebuilt content
|
||||
element['html'] = rebuilt_table['html']
|
||||
element['rebuilt_table'] = rebuilt_table
|
||||
element['rebuild_stats'] = rebuild_stats
|
||||
element['extracted_text'] = self._extract_text_from_html(rebuilt_table['html'])
|
||||
logger.info(
|
||||
f"[TABLE] Rebuilt table: {rebuilt_table['rows']}x{rebuilt_table['cols']} "
|
||||
f"with {len(rebuilt_table['cells'])} cells"
|
||||
)
|
||||
else:
|
||||
logger.warning(f"[TABLE] Rebuild failed: {rebuild_stats.get('reason', 'unknown')}")
|
||||
element['rebuild_stats'] = rebuild_stats
|
||||
|
||||
# Special handling for images/figures/charts/stamps (visual elements that need cropping)
|
||||
elif mapped_type in [ElementType.IMAGE, ElementType.FIGURE, ElementType.CHART, ElementType.DIAGRAM, ElementType.STAMP, ElementType.LOGO]:
|
||||
# Save image if path provided
|
||||
@@ -718,21 +732,6 @@ class PPStructureEnhanced:
|
||||
elements.append(element)
|
||||
logger.debug(f"Processed element {idx}: type={mapped_type}, bbox={bbox}")
|
||||
|
||||
# Apply cell validation to filter over-detected tables
|
||||
if settings.cell_validation_enabled:
|
||||
cell_validator = CellValidationEngine(CellValidationConfig(
|
||||
max_cell_density=settings.cell_validation_max_density,
|
||||
min_avg_cell_area=settings.cell_validation_min_cell_area,
|
||||
min_cell_height=settings.cell_validation_min_cell_height,
|
||||
enabled=True
|
||||
))
|
||||
elements, validation_stats = cell_validator.validate_and_filter_elements(elements)
|
||||
if validation_stats['reclassified_tables'] > 0:
|
||||
logger.info(
|
||||
f"Cell validation: {validation_stats['reclassified_tables']}/{validation_stats['total_tables']} "
|
||||
f"tables reclassified as TEXT due to over-detection"
|
||||
)
|
||||
|
||||
return elements
|
||||
|
||||
def _embed_images_in_table(
|
||||
|
||||
@@ -1,806 +0,0 @@
|
||||
"""
|
||||
Table Content Rebuilder
|
||||
|
||||
Rebuilds table content from raw OCR regions when PP-StructureV3's HTML output
|
||||
is incorrect due to cell merge errors or boundary detection issues.
|
||||
|
||||
This module addresses the key problem: PP-StructureV3's ML-based table recognition
|
||||
often merges multiple cells incorrectly, especially for borderless tables.
|
||||
The solution uses:
|
||||
1. cell_boxes validation (filter out-of-bounds cells)
|
||||
2. Raw OCR regions to rebuild accurate cell content
|
||||
3. Grid-based row/col position calculation
|
||||
"""
|
||||
|
||||
import logging
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Dict, Any, Optional, Tuple
|
||||
from collections import defaultdict
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class CellBox:
|
||||
"""Represents a validated cell bounding box."""
|
||||
x0: float
|
||||
y0: float
|
||||
x1: float
|
||||
y1: float
|
||||
original_index: int
|
||||
|
||||
@property
|
||||
def center_y(self) -> float:
|
||||
return (self.y0 + self.y1) / 2
|
||||
|
||||
@property
|
||||
def center_x(self) -> float:
|
||||
return (self.x0 + self.x1) / 2
|
||||
|
||||
@property
|
||||
def area(self) -> float:
|
||||
return max(0, (self.x1 - self.x0) * (self.y1 - self.y0))
|
||||
|
||||
|
||||
@dataclass
|
||||
class OCRTextRegion:
|
||||
"""Represents a raw OCR text region."""
|
||||
text: str
|
||||
x0: float
|
||||
y0: float
|
||||
x1: float
|
||||
y1: float
|
||||
confidence: float = 1.0
|
||||
|
||||
@property
|
||||
def center_y(self) -> float:
|
||||
return (self.y0 + self.y1) / 2
|
||||
|
||||
@property
|
||||
def center_x(self) -> float:
|
||||
return (self.x0 + self.x1) / 2
|
||||
|
||||
|
||||
@dataclass
|
||||
class RebuiltCell:
|
||||
"""Represents a rebuilt table cell."""
|
||||
row: int
|
||||
col: int
|
||||
row_span: int
|
||||
col_span: int
|
||||
content: str
|
||||
bbox: Optional[List[float]] = None
|
||||
ocr_regions: List[OCRTextRegion] = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.ocr_regions is None:
|
||||
self.ocr_regions = []
|
||||
|
||||
|
||||
class TableContentRebuilder:
|
||||
"""
|
||||
Rebuilds table content from raw OCR regions and validated cell_boxes.
|
||||
|
||||
This class solves the problem where PP-StructureV3's HTML output incorrectly
|
||||
merges multiple cells. Instead of relying on the ML-generated HTML, it:
|
||||
1. Validates cell_boxes against table bbox
|
||||
2. Groups cell_boxes into rows/columns by coordinate clustering
|
||||
3. Fills each cell with matching raw OCR text
|
||||
4. Generates correct table structure
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
boundary_tolerance: float = 20.0,
|
||||
row_clustering_threshold: float = 15.0,
|
||||
col_clustering_threshold: float = 15.0,
|
||||
iou_threshold_for_ocr_match: float = 0.3,
|
||||
min_text_coverage: float = 0.5
|
||||
):
|
||||
"""
|
||||
Initialize the rebuilder.
|
||||
|
||||
Args:
|
||||
boundary_tolerance: Tolerance for cell_boxes boundary check (pixels)
|
||||
row_clustering_threshold: Max Y-distance for cells in same row (pixels)
|
||||
col_clustering_threshold: Max X-distance for cells in same column (pixels)
|
||||
iou_threshold_for_ocr_match: Min IoU to consider OCR region inside cell
|
||||
min_text_coverage: Min overlap ratio for OCR text to be assigned to cell
|
||||
"""
|
||||
self.boundary_tolerance = boundary_tolerance
|
||||
self.row_clustering_threshold = row_clustering_threshold
|
||||
self.col_clustering_threshold = col_clustering_threshold
|
||||
self.iou_threshold = iou_threshold_for_ocr_match
|
||||
self.min_text_coverage = min_text_coverage
|
||||
|
||||
def validate_cell_boxes(
|
||||
self,
|
||||
cell_boxes: List[List[float]],
|
||||
table_bbox: List[float]
|
||||
) -> Tuple[List[CellBox], Dict[str, Any]]:
|
||||
"""
|
||||
Validate cell_boxes against table bbox, filtering invalid ones.
|
||||
|
||||
Args:
|
||||
cell_boxes: List of cell bounding boxes [[x0, y0, x1, y1], ...]
|
||||
table_bbox: Table bounding box [x0, y0, x1, y1]
|
||||
|
||||
Returns:
|
||||
Tuple of (valid_cells, validation_stats)
|
||||
"""
|
||||
if not cell_boxes or len(table_bbox) < 4:
|
||||
return [], {"total": 0, "valid": 0, "invalid": 0, "reason": "empty_input"}
|
||||
|
||||
table_x0, table_y0, table_x1, table_y1 = table_bbox[:4]
|
||||
table_height = table_y1 - table_y0
|
||||
table_width = table_x1 - table_x0
|
||||
|
||||
# Expanded table bounds with tolerance
|
||||
expanded_y1 = table_y1 + self.boundary_tolerance
|
||||
expanded_x1 = table_x1 + self.boundary_tolerance
|
||||
expanded_y0 = table_y0 - self.boundary_tolerance
|
||||
expanded_x0 = table_x0 - self.boundary_tolerance
|
||||
|
||||
valid_cells = []
|
||||
invalid_reasons = defaultdict(int)
|
||||
|
||||
for idx, box in enumerate(cell_boxes):
|
||||
if not box or len(box) < 4:
|
||||
invalid_reasons["invalid_format"] += 1
|
||||
continue
|
||||
|
||||
x0, y0, x1, y1 = box[:4]
|
||||
|
||||
# Check if cell is significantly outside table bounds
|
||||
# Cell's bottom (y1) shouldn't exceed table's bottom + tolerance
|
||||
if y1 > expanded_y1:
|
||||
invalid_reasons["y1_exceeds_table"] += 1
|
||||
continue
|
||||
|
||||
# Cell's top (y0) shouldn't be above table's top - tolerance
|
||||
if y0 < expanded_y0:
|
||||
invalid_reasons["y0_above_table"] += 1
|
||||
continue
|
||||
|
||||
# Cell's right (x1) shouldn't exceed table's right + tolerance
|
||||
if x1 > expanded_x1:
|
||||
invalid_reasons["x1_exceeds_table"] += 1
|
||||
continue
|
||||
|
||||
# Cell's left (x0) shouldn't be left of table - tolerance
|
||||
if x0 < expanded_x0:
|
||||
invalid_reasons["x0_left_of_table"] += 1
|
||||
continue
|
||||
|
||||
# Check for inverted coordinates
|
||||
if x0 >= x1 or y0 >= y1:
|
||||
invalid_reasons["inverted_coords"] += 1
|
||||
continue
|
||||
|
||||
# Check cell height is reasonable (at least 8px for readable text)
|
||||
cell_height = y1 - y0
|
||||
if cell_height < 8:
|
||||
invalid_reasons["too_small"] += 1
|
||||
continue
|
||||
|
||||
valid_cells.append(CellBox(
|
||||
x0=x0, y0=y0, x1=x1, y1=y1,
|
||||
original_index=idx
|
||||
))
|
||||
|
||||
stats = {
|
||||
"total": len(cell_boxes),
|
||||
"valid": len(valid_cells),
|
||||
"invalid": len(cell_boxes) - len(valid_cells),
|
||||
"invalid_reasons": dict(invalid_reasons),
|
||||
"validity_ratio": len(valid_cells) / len(cell_boxes) if cell_boxes else 0
|
||||
}
|
||||
|
||||
logger.info(
|
||||
f"Cell box validation: {stats['valid']}/{stats['total']} valid "
|
||||
f"(ratio={stats['validity_ratio']:.2%})"
|
||||
)
|
||||
if invalid_reasons:
|
||||
logger.debug(f"Invalid reasons: {dict(invalid_reasons)}")
|
||||
|
||||
return valid_cells, stats
|
||||
|
||||
def parse_raw_ocr_regions(
|
||||
self,
|
||||
raw_regions: List[Dict[str, Any]],
|
||||
table_bbox: List[float]
|
||||
) -> List[OCRTextRegion]:
|
||||
"""
|
||||
Parse raw OCR regions and filter to those within/near table bbox.
|
||||
|
||||
Args:
|
||||
raw_regions: List of raw OCR region dicts with 'text', 'bbox', 'confidence'
|
||||
table_bbox: Table bounding box [x0, y0, x1, y1]
|
||||
|
||||
Returns:
|
||||
List of OCRTextRegion objects within table area
|
||||
"""
|
||||
if not raw_regions or len(table_bbox) < 4:
|
||||
return []
|
||||
|
||||
table_x0, table_y0, table_x1, table_y1 = table_bbox[:4]
|
||||
# Expand table area slightly to catch edge text
|
||||
margin = 10
|
||||
|
||||
result = []
|
||||
for region in raw_regions:
|
||||
text = region.get('text', '').strip()
|
||||
if not text:
|
||||
continue
|
||||
|
||||
bbox = region.get('bbox', [])
|
||||
confidence = region.get('confidence', 1.0)
|
||||
|
||||
# Parse bbox (handle both nested and flat formats)
|
||||
if not bbox:
|
||||
continue
|
||||
|
||||
if isinstance(bbox[0], (list, tuple)):
|
||||
# Nested format: [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
|
||||
xs = [pt[0] for pt in bbox if len(pt) >= 2]
|
||||
ys = [pt[1] for pt in bbox if len(pt) >= 2]
|
||||
if xs and ys:
|
||||
x0, y0, x1, y1 = min(xs), min(ys), max(xs), max(ys)
|
||||
else:
|
||||
continue
|
||||
elif len(bbox) == 4:
|
||||
x0, y0, x1, y1 = bbox
|
||||
else:
|
||||
continue
|
||||
|
||||
# Check if region overlaps with table area
|
||||
if (x1 < table_x0 - margin or x0 > table_x1 + margin or
|
||||
y1 < table_y0 - margin or y0 > table_y1 + margin):
|
||||
continue
|
||||
|
||||
result.append(OCRTextRegion(
|
||||
text=text,
|
||||
x0=float(x0), y0=float(y0),
|
||||
x1=float(x1), y1=float(y1),
|
||||
confidence=confidence
|
||||
))
|
||||
|
||||
logger.debug(f"Parsed {len(result)} OCR regions within table area")
|
||||
return result
|
||||
|
||||
def cluster_cells_into_grid(
|
||||
self,
|
||||
cells: List[CellBox]
|
||||
) -> Tuple[List[float], List[float], Dict[Tuple[int, int], CellBox]]:
|
||||
"""
|
||||
Cluster cells into rows and columns based on coordinates.
|
||||
|
||||
Args:
|
||||
cells: List of validated CellBox objects
|
||||
|
||||
Returns:
|
||||
Tuple of (row_boundaries, col_boundaries, cell_grid)
|
||||
- row_boundaries: Y coordinates for row divisions
|
||||
- col_boundaries: X coordinates for column divisions
|
||||
- cell_grid: Dict mapping (row, col) to CellBox
|
||||
"""
|
||||
if not cells:
|
||||
return [], [], {}
|
||||
|
||||
# Collect all unique Y boundaries (top and bottom of cells)
|
||||
y_coords = set()
|
||||
x_coords = set()
|
||||
for cell in cells:
|
||||
y_coords.add(round(cell.y0, 1))
|
||||
y_coords.add(round(cell.y1, 1))
|
||||
x_coords.add(round(cell.x0, 1))
|
||||
x_coords.add(round(cell.x1, 1))
|
||||
|
||||
# Cluster nearby coordinates
|
||||
row_boundaries = self._cluster_coordinates(sorted(y_coords), self.row_clustering_threshold)
|
||||
col_boundaries = self._cluster_coordinates(sorted(x_coords), self.col_clustering_threshold)
|
||||
|
||||
logger.debug(f"Found {len(row_boundaries)} row boundaries, {len(col_boundaries)} col boundaries")
|
||||
|
||||
# Map cells to grid positions
|
||||
cell_grid = {}
|
||||
for cell in cells:
|
||||
# Find row (based on cell's top Y coordinate)
|
||||
row = self._find_position(cell.y0, row_boundaries)
|
||||
# Find column (based on cell's left X coordinate)
|
||||
col = self._find_position(cell.x0, col_boundaries)
|
||||
|
||||
if row is not None and col is not None:
|
||||
# Check for span (if cell extends across multiple rows/cols)
|
||||
row_end = self._find_position(cell.y1, row_boundaries)
|
||||
col_end = self._find_position(cell.x1, col_boundaries)
|
||||
|
||||
# Store with potential span info
|
||||
if (row, col) not in cell_grid:
|
||||
cell_grid[(row, col)] = cell
|
||||
|
||||
return row_boundaries, col_boundaries, cell_grid
|
||||
|
||||
def _cluster_coordinates(
|
||||
self,
|
||||
coords: List[float],
|
||||
threshold: float
|
||||
) -> List[float]:
|
||||
"""Cluster nearby coordinates into distinct values."""
|
||||
if not coords:
|
||||
return []
|
||||
|
||||
clustered = [coords[0]]
|
||||
for coord in coords[1:]:
|
||||
if coord - clustered[-1] > threshold:
|
||||
clustered.append(coord)
|
||||
|
||||
return clustered
|
||||
|
||||
def _find_position(
|
||||
self,
|
||||
value: float,
|
||||
boundaries: List[float]
|
||||
) -> Optional[int]:
|
||||
"""Find which position (index) a value falls into."""
|
||||
for i, boundary in enumerate(boundaries):
|
||||
if value <= boundary + self.row_clustering_threshold:
|
||||
return i
|
||||
return len(boundaries) - 1 if boundaries else None
|
||||
|
||||
def assign_ocr_to_cells(
|
||||
self,
|
||||
cells: List[CellBox],
|
||||
ocr_regions: List[OCRTextRegion],
|
||||
row_boundaries: List[float],
|
||||
col_boundaries: List[float]
|
||||
) -> Dict[Tuple[int, int], List[OCRTextRegion]]:
|
||||
"""
|
||||
Assign OCR text regions to cells based on spatial overlap.
|
||||
|
||||
Args:
|
||||
cells: List of validated CellBox objects
|
||||
ocr_regions: List of OCRTextRegion objects
|
||||
row_boundaries: Y coordinates for row divisions
|
||||
col_boundaries: X coordinates for column divisions
|
||||
|
||||
Returns:
|
||||
Dict mapping (row, col) to list of OCR regions in that cell
|
||||
"""
|
||||
cell_ocr_map: Dict[Tuple[int, int], List[OCRTextRegion]] = defaultdict(list)
|
||||
|
||||
for ocr in ocr_regions:
|
||||
best_cell = None
|
||||
best_overlap = 0
|
||||
|
||||
for cell in cells:
|
||||
overlap = self._calculate_overlap_ratio(
|
||||
(ocr.x0, ocr.y0, ocr.x1, ocr.y1),
|
||||
(cell.x0, cell.y0, cell.x1, cell.y1)
|
||||
)
|
||||
|
||||
if overlap > best_overlap and overlap >= self.min_text_coverage:
|
||||
best_overlap = overlap
|
||||
best_cell = cell
|
||||
|
||||
if best_cell:
|
||||
row = self._find_position(best_cell.y0, row_boundaries)
|
||||
col = self._find_position(best_cell.x0, col_boundaries)
|
||||
if row is not None and col is not None:
|
||||
cell_ocr_map[(row, col)].append(ocr)
|
||||
|
||||
return cell_ocr_map
|
||||
|
||||
def _calculate_overlap_ratio(
|
||||
self,
|
||||
box1: Tuple[float, float, float, float],
|
||||
box2: Tuple[float, float, float, float]
|
||||
) -> float:
|
||||
"""Calculate overlap ratio of box1 with box2."""
|
||||
x0_1, y0_1, x1_1, y1_1 = box1
|
||||
x0_2, y0_2, x1_2, y1_2 = box2
|
||||
|
||||
# Calculate intersection
|
||||
inter_x0 = max(x0_1, x0_2)
|
||||
inter_y0 = max(y0_1, y0_2)
|
||||
inter_x1 = min(x1_1, x1_2)
|
||||
inter_y1 = min(y1_1, y1_2)
|
||||
|
||||
if inter_x0 >= inter_x1 or inter_y0 >= inter_y1:
|
||||
return 0.0
|
||||
|
||||
inter_area = (inter_x1 - inter_x0) * (inter_y1 - inter_y0)
|
||||
box1_area = (x1_1 - x0_1) * (y1_1 - y0_1)
|
||||
|
||||
return inter_area / box1_area if box1_area > 0 else 0.0
|
||||
|
||||
def rebuild_table(
|
||||
self,
|
||||
cell_boxes: List[List[float]],
|
||||
table_bbox: List[float],
|
||||
raw_ocr_regions: List[Dict[str, Any]],
|
||||
original_html: str = ""
|
||||
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
||||
"""
|
||||
Rebuild table content from cell_boxes and raw OCR regions.
|
||||
|
||||
This is the main entry point. It:
|
||||
1. Validates cell_boxes
|
||||
2. If validity ratio is low, uses pure OCR-based rebuild
|
||||
3. Otherwise, uses cell_boxes + OCR hybrid rebuild
|
||||
|
||||
Args:
|
||||
cell_boxes: List of cell bounding boxes from PP-StructureV3
|
||||
table_bbox: Table bounding box [x0, y0, x1, y1]
|
||||
raw_ocr_regions: List of raw OCR region dicts
|
||||
original_html: Original HTML from PP-StructureV3 (for fallback)
|
||||
|
||||
Returns:
|
||||
Tuple of (rebuilt_table_dict, rebuild_stats)
|
||||
"""
|
||||
stats = {
|
||||
"action": "none",
|
||||
"reason": "",
|
||||
"original_cell_count": len(cell_boxes) if cell_boxes else 0,
|
||||
"valid_cell_count": 0,
|
||||
"ocr_regions_in_table": 0,
|
||||
"rebuilt_rows": 0,
|
||||
"rebuilt_cols": 0
|
||||
}
|
||||
|
||||
# Step 1: Validate cell_boxes
|
||||
valid_cells, validation_stats = self.validate_cell_boxes(cell_boxes, table_bbox)
|
||||
stats["valid_cell_count"] = validation_stats["valid"]
|
||||
stats["validation"] = validation_stats
|
||||
|
||||
# Step 2: Parse raw OCR regions in table area
|
||||
ocr_regions = self.parse_raw_ocr_regions(raw_ocr_regions, table_bbox)
|
||||
stats["ocr_regions_in_table"] = len(ocr_regions)
|
||||
|
||||
if not ocr_regions:
|
||||
stats["action"] = "skip"
|
||||
stats["reason"] = "no_ocr_regions_in_table"
|
||||
return None, stats
|
||||
|
||||
# Step 3: Choose rebuild strategy based on cell_boxes validity
|
||||
# If validity ratio is too low (< 50%), use pure OCR-based rebuild
|
||||
if validation_stats["validity_ratio"] < 0.5 or len(valid_cells) < 2:
|
||||
logger.info(
|
||||
f"Using pure OCR-based rebuild (validity={validation_stats['validity_ratio']:.2%})"
|
||||
)
|
||||
return self._rebuild_from_ocr_only(ocr_regions, table_bbox, stats)
|
||||
|
||||
# Otherwise, use hybrid cell_boxes + OCR rebuild
|
||||
return self._rebuild_with_cell_boxes(valid_cells, ocr_regions, stats, table_bbox)
|
||||
|
||||
def _rebuild_from_ocr_only(
|
||||
self,
|
||||
ocr_regions: List[OCRTextRegion],
|
||||
table_bbox: List[float],
|
||||
stats: Dict[str, Any]
|
||||
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
||||
"""
|
||||
Rebuild table using only OCR regions (when cell_boxes are unreliable).
|
||||
|
||||
Strategy:
|
||||
1. Detect column boundary from OCR x-coordinates
|
||||
2. Cluster OCR regions by Y coordinate into rows
|
||||
3. Split each row into left/right columns
|
||||
"""
|
||||
if not ocr_regions:
|
||||
stats["action"] = "skip"
|
||||
stats["reason"] = "no_ocr_regions"
|
||||
return None, stats
|
||||
|
||||
# Get table bounds
|
||||
table_x0, table_y0, table_x1, table_y1 = table_bbox[:4]
|
||||
table_width = table_x1 - table_x0
|
||||
|
||||
# Step 1: Detect column split point by analyzing x-coordinates
|
||||
# Look for the gap between left column (x0 < 250) and right column (x0 >= 250)
|
||||
col_split_x = self._detect_column_split(ocr_regions, table_bbox)
|
||||
logger.debug(f"Detected column split at x={col_split_x}")
|
||||
|
||||
# Step 2: Cluster OCR regions by Y coordinate into rows
|
||||
# Use smaller threshold (12px) to properly separate rows
|
||||
row_threshold = 12.0
|
||||
sorted_ocr = sorted(ocr_regions, key=lambda r: r.center_y)
|
||||
|
||||
rows = []
|
||||
current_row = [sorted_ocr[0]]
|
||||
|
||||
for ocr in sorted_ocr[1:]:
|
||||
if ocr.center_y - current_row[-1].center_y <= row_threshold:
|
||||
current_row.append(ocr)
|
||||
else:
|
||||
rows.append(current_row)
|
||||
current_row = [ocr]
|
||||
rows.append(current_row)
|
||||
|
||||
logger.debug(f"Detected {len(rows)} rows")
|
||||
|
||||
# Step 3: Analyze column structure
|
||||
left_regions = [r for r in ocr_regions if r.x0 < col_split_x]
|
||||
right_regions = [r for r in ocr_regions if r.x0 >= col_split_x]
|
||||
num_cols = 2 if len(left_regions) >= 2 and len(right_regions) >= 2 else 1
|
||||
|
||||
# Step 4: Build cells for each row
|
||||
rebuilt_cells = []
|
||||
for row_idx, row_ocrs in enumerate(rows):
|
||||
row_ocrs_sorted = sorted(row_ocrs, key=lambda r: r.center_x)
|
||||
|
||||
if num_cols == 2:
|
||||
# Split into left and right columns using x0
|
||||
left_ocrs = [r for r in row_ocrs_sorted if r.x0 < col_split_x]
|
||||
right_ocrs = [r for r in row_ocrs_sorted if r.x0 >= col_split_x]
|
||||
|
||||
# Left column cell
|
||||
if left_ocrs:
|
||||
left_content = " ".join(r.text for r in left_ocrs)
|
||||
left_bbox = [
|
||||
min(r.x0 for r in left_ocrs),
|
||||
min(r.y0 for r in left_ocrs),
|
||||
max(r.x1 for r in left_ocrs),
|
||||
max(r.y1 for r in left_ocrs)
|
||||
]
|
||||
rebuilt_cells.append({
|
||||
"row": row_idx,
|
||||
"col": 0,
|
||||
"row_span": 1,
|
||||
"col_span": 1,
|
||||
"content": left_content,
|
||||
"bbox": left_bbox
|
||||
})
|
||||
|
||||
# Right column cell
|
||||
if right_ocrs:
|
||||
right_content = " ".join(r.text for r in right_ocrs)
|
||||
right_bbox = [
|
||||
min(r.x0 for r in right_ocrs),
|
||||
min(r.y0 for r in right_ocrs),
|
||||
max(r.x1 for r in right_ocrs),
|
||||
max(r.y1 for r in right_ocrs)
|
||||
]
|
||||
rebuilt_cells.append({
|
||||
"row": row_idx,
|
||||
"col": 1,
|
||||
"row_span": 1,
|
||||
"col_span": 1,
|
||||
"content": right_content,
|
||||
"bbox": right_bbox
|
||||
})
|
||||
else:
|
||||
# Single column - merge all OCR in row
|
||||
row_content = " ".join(r.text for r in row_ocrs_sorted)
|
||||
row_bbox = [
|
||||
min(r.x0 for r in row_ocrs_sorted),
|
||||
min(r.y0 for r in row_ocrs_sorted),
|
||||
max(r.x1 for r in row_ocrs_sorted),
|
||||
max(r.y1 for r in row_ocrs_sorted)
|
||||
]
|
||||
rebuilt_cells.append({
|
||||
"row": row_idx,
|
||||
"col": 0,
|
||||
"row_span": 1,
|
||||
"col_span": 1,
|
||||
"content": row_content,
|
||||
"bbox": row_bbox
|
||||
})
|
||||
|
||||
num_rows = len(rows)
|
||||
stats["rebuilt_rows"] = num_rows
|
||||
stats["rebuilt_cols"] = num_cols
|
||||
|
||||
# Build result
|
||||
rebuilt_table = {
|
||||
"rows": num_rows,
|
||||
"cols": num_cols,
|
||||
"cells": rebuilt_cells,
|
||||
"html": self._generate_html(rebuilt_cells, num_rows, num_cols),
|
||||
"rebuild_source": "pure_ocr"
|
||||
}
|
||||
|
||||
stats["action"] = "rebuilt"
|
||||
stats["reason"] = "pure_ocr_success"
|
||||
stats["rebuilt_cell_count"] = len(rebuilt_cells)
|
||||
|
||||
logger.info(
|
||||
f"Table rebuilt (pure OCR): {num_rows}x{num_cols} with {len(rebuilt_cells)} cells"
|
||||
)
|
||||
|
||||
return rebuilt_table, stats
|
||||
|
||||
def _detect_column_split(
|
||||
self,
|
||||
ocr_regions: List[OCRTextRegion],
|
||||
table_bbox: List[float]
|
||||
) -> float:
|
||||
"""
|
||||
Detect the column split point by analyzing x-coordinates.
|
||||
|
||||
For tables with left/right structure (e.g., property-value tables),
|
||||
there's usually a gap between left column text and right column text.
|
||||
"""
|
||||
if not ocr_regions:
|
||||
return (table_bbox[0] + table_bbox[2]) / 2
|
||||
|
||||
# Collect all x0 values (left edge of each text region)
|
||||
x0_values = sorted(set(round(r.x0) for r in ocr_regions))
|
||||
|
||||
if len(x0_values) < 2:
|
||||
return (table_bbox[0] + table_bbox[2]) / 2
|
||||
|
||||
# Find the largest gap between consecutive x0 values
|
||||
# This usually indicates the column boundary
|
||||
max_gap = 0
|
||||
split_point = (table_bbox[0] + table_bbox[2]) / 2
|
||||
|
||||
for i in range(len(x0_values) - 1):
|
||||
gap = x0_values[i + 1] - x0_values[i]
|
||||
if gap > max_gap and gap > 50: # Require minimum 50px gap
|
||||
max_gap = gap
|
||||
split_point = (x0_values[i] + x0_values[i + 1]) / 2
|
||||
|
||||
# If no clear gap found, use table center
|
||||
if max_gap < 50:
|
||||
split_point = (table_bbox[0] + table_bbox[2]) / 2
|
||||
|
||||
return split_point
|
||||
|
||||
def _rebuild_with_cell_boxes(
|
||||
self,
|
||||
valid_cells: List[CellBox],
|
||||
ocr_regions: List[OCRTextRegion],
|
||||
stats: Dict[str, Any],
|
||||
table_bbox: Optional[List[float]] = None
|
||||
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
||||
"""Rebuild table using cell_boxes structure + OCR content."""
|
||||
# Step 3: Cluster cells into grid
|
||||
row_boundaries, col_boundaries, cell_grid = self.cluster_cells_into_grid(valid_cells)
|
||||
|
||||
num_rows = len(row_boundaries) - 1 if len(row_boundaries) > 1 else 1
|
||||
num_cols = len(col_boundaries) - 1 if len(col_boundaries) > 1 else 1
|
||||
|
||||
# Quality check: if hybrid produces too many columns or sparse grid, fall back to pure OCR
|
||||
# A well-formed table typically has 2-5 columns. Too many columns indicates poor clustering.
|
||||
total_expected_cells = num_rows * num_cols
|
||||
if num_cols > 5 or total_expected_cells > 100:
|
||||
logger.info(
|
||||
f"Hybrid mode produced {num_rows}x{num_cols} grid (too sparse), "
|
||||
f"falling back to pure OCR mode"
|
||||
)
|
||||
if table_bbox:
|
||||
return self._rebuild_from_ocr_only(ocr_regions, table_bbox, stats)
|
||||
|
||||
stats["rebuilt_rows"] = num_rows
|
||||
stats["rebuilt_cols"] = num_cols
|
||||
|
||||
# Step 4: Assign OCR text to cells
|
||||
cell_ocr_map = self.assign_ocr_to_cells(
|
||||
valid_cells, ocr_regions, row_boundaries, col_boundaries
|
||||
)
|
||||
|
||||
# Step 5: Build rebuilt cells
|
||||
rebuilt_cells = []
|
||||
for (row, col), ocr_list in cell_ocr_map.items():
|
||||
# Sort OCR regions by position (top to bottom, left to right)
|
||||
sorted_ocr = sorted(ocr_list, key=lambda r: (r.center_y, r.center_x))
|
||||
content = " ".join(r.text for r in sorted_ocr)
|
||||
|
||||
# Find the cell bbox for this position
|
||||
cell_bbox = None
|
||||
for cell in valid_cells:
|
||||
cell_row = self._find_position(cell.y0, row_boundaries)
|
||||
cell_col = self._find_position(cell.x0, col_boundaries)
|
||||
if cell_row == row and cell_col == col:
|
||||
cell_bbox = [cell.x0, cell.y0, cell.x1, cell.y1]
|
||||
break
|
||||
|
||||
rebuilt_cells.append({
|
||||
"row": row,
|
||||
"col": col,
|
||||
"row_span": 1,
|
||||
"col_span": 1,
|
||||
"content": content,
|
||||
"bbox": cell_bbox
|
||||
})
|
||||
|
||||
# Quality check: if too few cells have content compared to grid size, fall back to pure OCR
|
||||
content_ratio = len(rebuilt_cells) / total_expected_cells if total_expected_cells > 0 else 0
|
||||
if content_ratio < 0.3 and table_bbox:
|
||||
logger.info(
|
||||
f"Hybrid mode has low content ratio ({content_ratio:.2%}), "
|
||||
f"falling back to pure OCR mode"
|
||||
)
|
||||
return self._rebuild_from_ocr_only(ocr_regions, table_bbox, stats)
|
||||
|
||||
# Build result
|
||||
rebuilt_table = {
|
||||
"rows": num_rows,
|
||||
"cols": num_cols,
|
||||
"cells": rebuilt_cells,
|
||||
"html": self._generate_html(rebuilt_cells, num_rows, num_cols),
|
||||
"rebuild_source": "cell_boxes_hybrid"
|
||||
}
|
||||
|
||||
stats["action"] = "rebuilt"
|
||||
stats["reason"] = "hybrid_success"
|
||||
stats["rebuilt_cell_count"] = len(rebuilt_cells)
|
||||
|
||||
logger.info(
|
||||
f"Table rebuilt (hybrid): {num_rows}x{num_cols} with {len(rebuilt_cells)} cells "
|
||||
f"(from {len(ocr_regions)} OCR regions)"
|
||||
)
|
||||
|
||||
return rebuilt_table, stats
|
||||
|
||||
def _generate_html(
|
||||
self,
|
||||
cells: List[Dict[str, Any]],
|
||||
num_rows: int,
|
||||
num_cols: int
|
||||
) -> str:
|
||||
"""Generate HTML table from rebuilt cells."""
|
||||
# Create grid
|
||||
grid = [[None for _ in range(num_cols)] for _ in range(num_rows)]
|
||||
|
||||
for cell in cells:
|
||||
row, col = cell["row"], cell["col"]
|
||||
if 0 <= row < num_rows and 0 <= col < num_cols:
|
||||
grid[row][col] = cell["content"]
|
||||
|
||||
# Build HTML
|
||||
html_parts = ["<html><body><table>"]
|
||||
for row_idx in range(num_rows):
|
||||
html_parts.append("<tr>")
|
||||
for col_idx in range(num_cols):
|
||||
content = grid[row_idx][col_idx] or ""
|
||||
tag = "th" if row_idx == 0 else "td"
|
||||
html_parts.append(f"<{tag}>{content}</{tag}>")
|
||||
html_parts.append("</tr>")
|
||||
html_parts.append("</table></body></html>")
|
||||
|
||||
return "".join(html_parts)
|
||||
|
||||
def should_rebuild(
|
||||
self,
|
||||
cell_boxes: List[List[float]],
|
||||
table_bbox: List[float],
|
||||
original_html: str = ""
|
||||
) -> Tuple[bool, str]:
|
||||
"""
|
||||
Determine if table should be rebuilt based on cell_boxes validity.
|
||||
|
||||
Args:
|
||||
cell_boxes: List of cell bounding boxes
|
||||
table_bbox: Table bounding box
|
||||
original_html: Original HTML from PP-StructureV3
|
||||
|
||||
Returns:
|
||||
Tuple of (should_rebuild, reason)
|
||||
"""
|
||||
if not cell_boxes:
|
||||
return False, "no_cell_boxes"
|
||||
|
||||
_, validation_stats = self.validate_cell_boxes(cell_boxes, table_bbox)
|
||||
|
||||
# Always rebuild if ANY cells are invalid - PP-Structure HTML often merges cells incorrectly
|
||||
# even when most cell_boxes are valid
|
||||
if validation_stats["invalid"] > 0:
|
||||
return True, f"invalid_cells_{validation_stats['invalid']}/{validation_stats['total']}"
|
||||
|
||||
# Rebuild if there are boundary violations
|
||||
invalid_reasons = validation_stats.get("invalid_reasons", {})
|
||||
boundary_violations = (
|
||||
invalid_reasons.get("y1_exceeds_table", 0) +
|
||||
invalid_reasons.get("y0_above_table", 0) +
|
||||
invalid_reasons.get("x1_exceeds_table", 0) +
|
||||
invalid_reasons.get("x0_left_of_table", 0)
|
||||
)
|
||||
|
||||
if boundary_violations > 0:
|
||||
return True, f"boundary_violations_{boundary_violations}"
|
||||
|
||||
# Also rebuild to ensure OCR-based content is used instead of PP-Structure HTML
|
||||
# PP-Structure's HTML often has incorrect cell merging
|
||||
return True, "ocr_content_preferred"
|
||||
@@ -15,6 +15,8 @@ from typing import Dict, List, Optional, Set, Tuple
|
||||
from reportlab.pdfgen import canvas
|
||||
from reportlab.lib.colors import black
|
||||
|
||||
from app.utils.bbox_utils import normalize_bbox
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -162,6 +164,7 @@ class TextRegionRenderer:
|
||||
def get_bbox_as_rect(self, bbox: List[List[float]]) -> Tuple[float, float, float, float]:
|
||||
"""
|
||||
Convert quadrilateral bbox to axis-aligned rectangle (x0, y0, x1, y1).
|
||||
Uses shared bbox utility.
|
||||
|
||||
Args:
|
||||
bbox: List of 4 [x, y] coordinate pairs
|
||||
@@ -169,12 +172,8 @@ class TextRegionRenderer:
|
||||
Returns:
|
||||
Tuple of (x0, y0, x1, y1) - min/max coordinates
|
||||
"""
|
||||
if len(bbox) < 4:
|
||||
return (0.0, 0.0, 0.0, 0.0)
|
||||
|
||||
x_coords = [p[0] for p in bbox]
|
||||
y_coords = [p[1] for p in bbox]
|
||||
return (min(x_coords), min(y_coords), max(x_coords), max(y_coords))
|
||||
result = normalize_bbox(bbox)
|
||||
return result if result else (0.0, 0.0, 0.0, 0.0)
|
||||
|
||||
def get_bbox_left_baseline(
|
||||
self,
|
||||
@@ -646,19 +645,26 @@ def load_raw_ocr_regions(result_dir: str, task_id: str, page_num: int) -> List[D
|
||||
from pathlib import Path
|
||||
import json
|
||||
|
||||
# Construct filename pattern
|
||||
filename = f"{task_id}_edit_page_{page_num}_raw_ocr_regions.json"
|
||||
file_path = Path(result_dir) / filename
|
||||
result_path = Path(result_dir)
|
||||
|
||||
if not file_path.exists():
|
||||
logger.warning(f"Raw OCR regions file not found: {file_path}")
|
||||
return []
|
||||
# Use glob pattern to find raw OCR regions file
|
||||
# Filename format: {task_id}_{original_filename}_page_{page_num}_raw_ocr_regions.json
|
||||
# The original_filename varies based on uploaded file (e.g., scan, document, etc.)
|
||||
glob_pattern = f"{task_id}_*_page_{page_num}_raw_ocr_regions.json"
|
||||
matching_files = list(result_path.glob(glob_pattern))
|
||||
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
regions = json.load(f)
|
||||
logger.info(f"Loaded {len(regions)} raw OCR regions from {filename}")
|
||||
return regions
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to load raw OCR regions: {e}")
|
||||
return []
|
||||
if matching_files:
|
||||
# Use the first matching file (there should only be one per page)
|
||||
file_path = matching_files[0]
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
regions = json.load(f)
|
||||
logger.info(f"Loaded {len(regions)} raw OCR regions from {file_path.name}")
|
||||
return regions
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to load raw OCR regions from {file_path}: {e}")
|
||||
return []
|
||||
|
||||
logger.warning(f"Raw OCR regions file not found for task {task_id} page {page_num}. "
|
||||
f"Glob pattern: {glob_pattern}")
|
||||
return []
|
||||
|
||||
Reference in New Issue
Block a user