chore: project cleanup and prepare for dual-track processing refactor
- Removed all test files and directories - Deleted outdated documentation (will be rewritten) - Cleaned up temporary files, logs, and uploads - Archived 5 completed OpenSpec proposals - Created new dual-track-document-processing proposal with complete OpenSpec structure - Dual-track architecture: OCR track (PaddleOCR) + Direct track (PyMuPDF) - UnifiedDocument model for consistent output - Support for structure-preserving translation - Updated .gitignore to prevent future test/temp files This is a major cleanup preparing for the complete refactoring of the document processing pipeline. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
276
openspec/changes/dual-track-document-processing/design.md
Normal file
276
openspec/changes/dual-track-document-processing/design.md
Normal file
@@ -0,0 +1,276 @@
|
||||
# Technical Design: Dual-track Document Processing
|
||||
|
||||
## Context
|
||||
|
||||
### Background
|
||||
The current OCR tool processes all documents through PaddleOCR, even when dealing with editable PDFs that contain extractable text. This causes:
|
||||
- Unnecessary processing overhead
|
||||
- Potential quality degradation from re-OCRing already digital text
|
||||
- Loss of precise formatting information
|
||||
- Inefficient GPU usage on documents that don't need OCR
|
||||
|
||||
### Constraints
|
||||
- RTX 4060 8GB GPU memory limitation
|
||||
- Need to maintain backward compatibility with existing API
|
||||
- Must support future translation features
|
||||
- Should handle mixed documents (partially scanned, partially digital)
|
||||
|
||||
### Stakeholders
|
||||
- API consumers expecting consistent JSON/PDF output
|
||||
- Translation system requiring structure preservation
|
||||
- Performance-sensitive deployments
|
||||
|
||||
## Goals / Non-Goals
|
||||
|
||||
### Goals
|
||||
- Intelligently route documents to appropriate processing track
|
||||
- Preserve document structure for translation
|
||||
- Optimize GPU usage by avoiding unnecessary OCR
|
||||
- Maintain unified output format across tracks
|
||||
- Reduce processing time for editable PDFs by 70%+
|
||||
|
||||
### Non-Goals
|
||||
- Implementing the actual translation engine (future phase)
|
||||
- Supporting video or audio transcription
|
||||
- Real-time collaborative editing
|
||||
- OCR model training or fine-tuning
|
||||
|
||||
## Decisions
|
||||
|
||||
### Decision 1: Dual-track Architecture
|
||||
**What**: Implement two separate processing pipelines - OCR track and Direct extraction track
|
||||
|
||||
**Why**:
|
||||
- Editable PDFs don't need OCR, can be processed 10-100x faster
|
||||
- Direct extraction preserves exact formatting and fonts
|
||||
- OCR track remains optimal for scanned documents
|
||||
|
||||
**Alternatives considered**:
|
||||
1. **Single enhanced OCR pipeline**: Would still waste resources on editable PDFs
|
||||
2. **Hybrid approach per page**: Too complex, most documents are uniformly editable or scanned
|
||||
3. **Multiple specialized pipelines**: Over-engineering for current requirements
|
||||
|
||||
### Decision 2: UnifiedDocument Model
|
||||
**What**: Create a standardized intermediate representation for both tracks
|
||||
|
||||
**Why**:
|
||||
- Provides consistent API interface regardless of processing track
|
||||
- Simplifies downstream processing (PDF generation, translation)
|
||||
- Enables track switching without breaking changes
|
||||
|
||||
**Structure**:
|
||||
```python
|
||||
@dataclass
|
||||
class UnifiedDocument:
|
||||
document_id: str
|
||||
metadata: DocumentMetadata
|
||||
pages: List[Page]
|
||||
processing_track: Literal["ocr", "direct"]
|
||||
|
||||
@dataclass
|
||||
class Page:
|
||||
page_number: int
|
||||
elements: List[DocumentElement]
|
||||
dimensions: Dimensions
|
||||
|
||||
@dataclass
|
||||
class DocumentElement:
|
||||
element_id: str
|
||||
type: ElementType # text, table, image, header, etc.
|
||||
content: Union[str, Dict, bytes]
|
||||
bbox: BoundingBox
|
||||
style: Optional[StyleInfo]
|
||||
confidence: Optional[float] # Only for OCR track
|
||||
```
|
||||
|
||||
### Decision 3: PyMuPDF for Direct Extraction
|
||||
**What**: Use PyMuPDF (fitz) library for editable PDF processing
|
||||
|
||||
**Why**:
|
||||
- Mature, well-maintained library
|
||||
- Excellent coordinate preservation
|
||||
- Fast C++ backend
|
||||
- Supports text, tables, and image extraction with positions
|
||||
|
||||
**Alternatives considered**:
|
||||
1. **pdfplumber**: Good but slower, less precise coordinates
|
||||
2. **PyPDF2**: Limited layout information
|
||||
3. **PDFMiner**: Complex API, slower performance
|
||||
|
||||
### Decision 4: Processing Track Auto-detection
|
||||
**What**: Automatically determine optimal track based on document analysis
|
||||
|
||||
**Detection logic**:
|
||||
```python
|
||||
def detect_track(file_path: Path) -> str:
|
||||
file_type = magic.from_file(file_path, mime=True)
|
||||
|
||||
if file_type.startswith('image/'):
|
||||
return "ocr"
|
||||
|
||||
if file_type == 'application/pdf':
|
||||
# Check if PDF has extractable text
|
||||
doc = fitz.open(file_path)
|
||||
for page in doc[:3]: # Sample first 3 pages
|
||||
text = page.get_text()
|
||||
if len(text.strip()) < 100: # Minimal text
|
||||
return "ocr"
|
||||
return "direct"
|
||||
|
||||
if file_type in OFFICE_MIMES:
|
||||
return "ocr" # For now, may add direct Office support later
|
||||
|
||||
return "ocr" # Default fallback
|
||||
```
|
||||
|
||||
### Decision 5: GPU Memory Management
|
||||
**What**: Implement dynamic batch sizing and model caching for RTX 4060 8GB
|
||||
|
||||
**Why**:
|
||||
- Prevents OOM errors
|
||||
- Maximizes throughput
|
||||
- Enables concurrent request handling
|
||||
|
||||
**Strategy**:
|
||||
```python
|
||||
# Adaptive batch sizing based on available memory
|
||||
batch_size = calculate_batch_size(
|
||||
available_memory=get_gpu_memory(),
|
||||
image_size=image.shape,
|
||||
model_size=MODEL_MEMORY_REQUIREMENTS
|
||||
)
|
||||
|
||||
# Model caching to avoid reload overhead
|
||||
@lru_cache(maxsize=2)
|
||||
def get_model(model_type: str):
|
||||
return load_model(model_type)
|
||||
```
|
||||
|
||||
### Decision 6: Backward Compatibility
|
||||
**What**: Maintain existing API while adding new capabilities
|
||||
|
||||
**How**:
|
||||
- Existing endpoints continue working unchanged
|
||||
- New `processing_track` parameter is optional
|
||||
- Output format compatible with current consumers
|
||||
- Gradual migration path for clients
|
||||
|
||||
## Risks / Trade-offs
|
||||
|
||||
### Risk 1: Mixed Content Documents
|
||||
**Risk**: Documents with both scanned and digital pages
|
||||
**Mitigation**:
|
||||
- Page-level track detection as fallback
|
||||
- Confidence scoring to identify uncertain pages
|
||||
- Manual override option via API
|
||||
|
||||
### Risk 2: Direct Extraction Quality
|
||||
**Risk**: Some PDFs have poor internal structure
|
||||
**Mitigation**:
|
||||
- Fallback to OCR track if extraction quality is low
|
||||
- Quality metrics: text density, structure coherence
|
||||
- User-reportable quality issues
|
||||
|
||||
### Risk 3: Memory Pressure
|
||||
**Risk**: RTX 4060 8GB limitation with concurrent requests
|
||||
**Mitigation**:
|
||||
- Request queuing system
|
||||
- Dynamic batch adjustment
|
||||
- CPU fallback for overflow
|
||||
|
||||
### Trade-off 1: Processing Time vs Accuracy
|
||||
- Direct extraction: Fast but depends on PDF quality
|
||||
- OCR: Slower but consistent quality
|
||||
- **Decision**: Prioritize speed for editable PDFs, accuracy for scanned
|
||||
|
||||
### Trade-off 2: Complexity vs Flexibility
|
||||
- Two tracks increase system complexity
|
||||
- But enable optimal processing per document type
|
||||
- **Decision**: Accept complexity for 10x+ performance gains
|
||||
|
||||
## Migration Plan
|
||||
|
||||
### Phase 1: Infrastructure (Week 1-2)
|
||||
1. Deploy UnifiedDocument model
|
||||
2. Implement DocumentTypeDetector
|
||||
3. Add DirectExtractionEngine
|
||||
4. Update logging and monitoring
|
||||
|
||||
### Phase 2: Integration (Week 3)
|
||||
1. Update OCR service with routing logic
|
||||
2. Modify PDF generator for unified model
|
||||
3. Add new API endpoints
|
||||
4. Deploy to staging
|
||||
|
||||
### Phase 3: Validation (Week 4)
|
||||
1. A/B testing with subset of traffic
|
||||
2. Performance benchmarking
|
||||
3. Quality validation
|
||||
4. Client integration testing
|
||||
|
||||
### Rollback Plan
|
||||
1. Feature flag to disable dual-track
|
||||
2. Fallback all requests to OCR track
|
||||
3. Maintain old code paths during transition
|
||||
4. Database migration reversible
|
||||
|
||||
## Open Questions
|
||||
|
||||
### Resolved
|
||||
- Q: Should we support page-level track mixing?
|
||||
- A: No, adds complexity with minimal benefit. Document-level is sufficient.
|
||||
|
||||
- Q: How to handle Office documents?
|
||||
- A: OCR track initially, consider python-docx/openpyxl later if needed.
|
||||
|
||||
### Pending
|
||||
- Q: What translation services to integrate with?
|
||||
- Needs stakeholder input on cost/quality trade-offs
|
||||
|
||||
- Q: Should we cache extracted text for repeated processing?
|
||||
- Depends on storage costs vs reprocessing frequency
|
||||
|
||||
- Q: How to handle password-protected PDFs?
|
||||
- May need API parameter for passwords
|
||||
|
||||
## Performance Targets
|
||||
|
||||
### Direct Extraction Track
|
||||
- Latency: <500ms per page
|
||||
- Throughput: 100+ pages/minute
|
||||
- Memory: <500MB per document
|
||||
|
||||
### OCR Track (Optimized)
|
||||
- Latency: 2-5s per page (GPU)
|
||||
- Throughput: 20-30 pages/minute
|
||||
- Memory: <2GB per batch
|
||||
|
||||
### API Response Times
|
||||
- Document type detection: <100ms
|
||||
- Processing initiation: <200ms
|
||||
- Result retrieval: <100ms
|
||||
|
||||
## Technical Dependencies
|
||||
|
||||
### Python Packages
|
||||
```python
|
||||
# Direct extraction
|
||||
PyMuPDF==1.23.x
|
||||
pdfplumber==0.10.x # Fallback/validation
|
||||
python-magic-bin==0.4.x
|
||||
|
||||
# OCR enhancement
|
||||
paddlepaddle-gpu==2.5.2
|
||||
paddleocr==2.7.3
|
||||
|
||||
# Infrastructure
|
||||
pydantic==2.x
|
||||
fastapi==0.100+
|
||||
redis==5.x # For caching
|
||||
```
|
||||
|
||||
### System Requirements
|
||||
- CUDA 11.8+ for PaddlePaddle
|
||||
- libmagic for file detection
|
||||
- 16GB RAM minimum
|
||||
- 50GB disk for models and cache
|
||||
Reference in New Issue
Block a user