chore: project cleanup and prepare for dual-track processing refactor

- Removed all test files and directories
- Deleted outdated documentation (will be rewritten)
- Cleaned up temporary files, logs, and uploads
- Archived 5 completed OpenSpec proposals
- Created new dual-track-document-processing proposal with complete OpenSpec structure
  - Dual-track architecture: OCR track (PaddleOCR) + Direct track (PyMuPDF)
  - UnifiedDocument model for consistent output
  - Support for structure-preserving translation
- Updated .gitignore to prevent future test/temp files

This is a major cleanup preparing for the complete refactoring of the document processing pipeline.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
egg
2025-11-18 20:02:31 +08:00
parent 0edc56b03f
commit cd3cbea49d
64 changed files with 3573 additions and 8190 deletions

View File

@@ -0,0 +1,276 @@
# Technical Design: Dual-track Document Processing
## Context
### Background
The current OCR tool processes all documents through PaddleOCR, even when dealing with editable PDFs that contain extractable text. This causes:
- Unnecessary processing overhead
- Potential quality degradation from re-OCRing already digital text
- Loss of precise formatting information
- Inefficient GPU usage on documents that don't need OCR
### Constraints
- RTX 4060 8GB GPU memory limitation
- Need to maintain backward compatibility with existing API
- Must support future translation features
- Should handle mixed documents (partially scanned, partially digital)
### Stakeholders
- API consumers expecting consistent JSON/PDF output
- Translation system requiring structure preservation
- Performance-sensitive deployments
## Goals / Non-Goals
### Goals
- Intelligently route documents to appropriate processing track
- Preserve document structure for translation
- Optimize GPU usage by avoiding unnecessary OCR
- Maintain unified output format across tracks
- Reduce processing time for editable PDFs by 70%+
### Non-Goals
- Implementing the actual translation engine (future phase)
- Supporting video or audio transcription
- Real-time collaborative editing
- OCR model training or fine-tuning
## Decisions
### Decision 1: Dual-track Architecture
**What**: Implement two separate processing pipelines - OCR track and Direct extraction track
**Why**:
- Editable PDFs don't need OCR, can be processed 10-100x faster
- Direct extraction preserves exact formatting and fonts
- OCR track remains optimal for scanned documents
**Alternatives considered**:
1. **Single enhanced OCR pipeline**: Would still waste resources on editable PDFs
2. **Hybrid approach per page**: Too complex, most documents are uniformly editable or scanned
3. **Multiple specialized pipelines**: Over-engineering for current requirements
### Decision 2: UnifiedDocument Model
**What**: Create a standardized intermediate representation for both tracks
**Why**:
- Provides consistent API interface regardless of processing track
- Simplifies downstream processing (PDF generation, translation)
- Enables track switching without breaking changes
**Structure**:
```python
@dataclass
class UnifiedDocument:
document_id: str
metadata: DocumentMetadata
pages: List[Page]
processing_track: Literal["ocr", "direct"]
@dataclass
class Page:
page_number: int
elements: List[DocumentElement]
dimensions: Dimensions
@dataclass
class DocumentElement:
element_id: str
type: ElementType # text, table, image, header, etc.
content: Union[str, Dict, bytes]
bbox: BoundingBox
style: Optional[StyleInfo]
confidence: Optional[float] # Only for OCR track
```
### Decision 3: PyMuPDF for Direct Extraction
**What**: Use PyMuPDF (fitz) library for editable PDF processing
**Why**:
- Mature, well-maintained library
- Excellent coordinate preservation
- Fast C++ backend
- Supports text, tables, and image extraction with positions
**Alternatives considered**:
1. **pdfplumber**: Good but slower, less precise coordinates
2. **PyPDF2**: Limited layout information
3. **PDFMiner**: Complex API, slower performance
### Decision 4: Processing Track Auto-detection
**What**: Automatically determine optimal track based on document analysis
**Detection logic**:
```python
def detect_track(file_path: Path) -> str:
file_type = magic.from_file(file_path, mime=True)
if file_type.startswith('image/'):
return "ocr"
if file_type == 'application/pdf':
# Check if PDF has extractable text
doc = fitz.open(file_path)
for page in doc[:3]: # Sample first 3 pages
text = page.get_text()
if len(text.strip()) < 100: # Minimal text
return "ocr"
return "direct"
if file_type in OFFICE_MIMES:
return "ocr" # For now, may add direct Office support later
return "ocr" # Default fallback
```
### Decision 5: GPU Memory Management
**What**: Implement dynamic batch sizing and model caching for RTX 4060 8GB
**Why**:
- Prevents OOM errors
- Maximizes throughput
- Enables concurrent request handling
**Strategy**:
```python
# Adaptive batch sizing based on available memory
batch_size = calculate_batch_size(
available_memory=get_gpu_memory(),
image_size=image.shape,
model_size=MODEL_MEMORY_REQUIREMENTS
)
# Model caching to avoid reload overhead
@lru_cache(maxsize=2)
def get_model(model_type: str):
return load_model(model_type)
```
### Decision 6: Backward Compatibility
**What**: Maintain existing API while adding new capabilities
**How**:
- Existing endpoints continue working unchanged
- New `processing_track` parameter is optional
- Output format compatible with current consumers
- Gradual migration path for clients
## Risks / Trade-offs
### Risk 1: Mixed Content Documents
**Risk**: Documents with both scanned and digital pages
**Mitigation**:
- Page-level track detection as fallback
- Confidence scoring to identify uncertain pages
- Manual override option via API
### Risk 2: Direct Extraction Quality
**Risk**: Some PDFs have poor internal structure
**Mitigation**:
- Fallback to OCR track if extraction quality is low
- Quality metrics: text density, structure coherence
- User-reportable quality issues
### Risk 3: Memory Pressure
**Risk**: RTX 4060 8GB limitation with concurrent requests
**Mitigation**:
- Request queuing system
- Dynamic batch adjustment
- CPU fallback for overflow
### Trade-off 1: Processing Time vs Accuracy
- Direct extraction: Fast but depends on PDF quality
- OCR: Slower but consistent quality
- **Decision**: Prioritize speed for editable PDFs, accuracy for scanned
### Trade-off 2: Complexity vs Flexibility
- Two tracks increase system complexity
- But enable optimal processing per document type
- **Decision**: Accept complexity for 10x+ performance gains
## Migration Plan
### Phase 1: Infrastructure (Week 1-2)
1. Deploy UnifiedDocument model
2. Implement DocumentTypeDetector
3. Add DirectExtractionEngine
4. Update logging and monitoring
### Phase 2: Integration (Week 3)
1. Update OCR service with routing logic
2. Modify PDF generator for unified model
3. Add new API endpoints
4. Deploy to staging
### Phase 3: Validation (Week 4)
1. A/B testing with subset of traffic
2. Performance benchmarking
3. Quality validation
4. Client integration testing
### Rollback Plan
1. Feature flag to disable dual-track
2. Fallback all requests to OCR track
3. Maintain old code paths during transition
4. Database migration reversible
## Open Questions
### Resolved
- Q: Should we support page-level track mixing?
- A: No, adds complexity with minimal benefit. Document-level is sufficient.
- Q: How to handle Office documents?
- A: OCR track initially, consider python-docx/openpyxl later if needed.
### Pending
- Q: What translation services to integrate with?
- Needs stakeholder input on cost/quality trade-offs
- Q: Should we cache extracted text for repeated processing?
- Depends on storage costs vs reprocessing frequency
- Q: How to handle password-protected PDFs?
- May need API parameter for passwords
## Performance Targets
### Direct Extraction Track
- Latency: <500ms per page
- Throughput: 100+ pages/minute
- Memory: <500MB per document
### OCR Track (Optimized)
- Latency: 2-5s per page (GPU)
- Throughput: 20-30 pages/minute
- Memory: <2GB per batch
### API Response Times
- Document type detection: <100ms
- Processing initiation: <200ms
- Result retrieval: <100ms
## Technical Dependencies
### Python Packages
```python
# Direct extraction
PyMuPDF==1.23.x
pdfplumber==0.10.x # Fallback/validation
python-magic-bin==0.4.x
# OCR enhancement
paddlepaddle-gpu==2.5.2
paddleocr==2.7.3
# Infrastructure
pydantic==2.x
fastapi==0.100+
redis==5.x # For caching
```
### System Requirements
- CUDA 11.8+ for PaddlePaddle
- libmagic for file detection
- 16GB RAM minimum
- 50GB disk for models and cache