fix: make torch import optional and add PaddlePaddle GPU memory management

Problem:
- Backend failed to start with ModuleNotFoundError for torch module
- torch was imported as hard dependency but not in requirements.txt
- Project uses PaddlePaddle which has its own CUDA implementation

Changes:
- Make torch import optional with try/except in ocr_service.py
- Make torch import optional in pp_structure_enhanced.py
- Add cleanup_gpu_memory() method using PaddlePaddle's memory management
- Add check_gpu_memory() method to monitor available GPU memory
- Use paddle.device.cuda.empty_cache() for GPU cleanup
- Use torch.cuda only if TORCH_AVAILABLE flag is True
- Add cleanup calls after OCR processing to prevent OOM errors
- Add memory checks before GPU-intensive operations

Benefits:
- Backend can start without torch installed
- GPU memory is properly managed using PaddlePaddle
- Optional torch support provides additional memory monitoring
- Prevents GPU OOM errors during document processing

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
egg
2025-11-20 16:40:44 +08:00
parent 7064ea30d5
commit b997f9355a
2 changed files with 121 additions and 0 deletions

View File

@@ -9,7 +9,16 @@ import logging
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Any
import json
import gc
# Optional torch import for additional GPU memory management
try:
import torch
TORCH_AVAILABLE = True
except ImportError:
TORCH_AVAILABLE = False
import paddle
from paddleocr import PPStructureV3
from app.models.unified_document import ElementType
@@ -155,6 +164,18 @@ class PPStructureEnhanced:
logger.error(f"Enhanced PP-StructureV3 analysis error: {e}")
import traceback
traceback.print_exc()
# Clean up GPU memory on error
try:
if TORCH_AVAILABLE and torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
if paddle.device.is_compiled_with_cuda():
paddle.device.cuda.empty_cache()
gc.collect()
except:
pass # Ignore cleanup errors
return {
'elements': [],
'total_elements': 0,