feat: add table detection options and scan artifact removal
- Add TableDetectionSelector component for wired/wireless/region detection - Add CV-based table line detector module (disabled due to poor performance) - Add scan artifact removal preprocessing step (removes faint horizontal lines) - Add PreprocessingConfig schema with remove_scan_artifacts option - Update frontend PreprocessingSettings with scan artifact toggle - Integrate table detection config into ProcessingPage - Archive extract-table-cell-boxes proposal 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -104,7 +104,15 @@ class Settings(BaseSettings):
|
||||
# Now using None to let PaddleX use its optimized defaults.
|
||||
layout_detection_threshold: Optional[float] = Field(default=None) # None = use PaddleX default
|
||||
layout_nms_threshold: Optional[float] = Field(default=None) # None = use PaddleX default
|
||||
layout_merge_mode: Optional[str] = Field(default=None) # None = use PaddleX default
|
||||
# layout_merge_bboxes_mode options:
|
||||
# - "large": Keep larger box when overlap (default)
|
||||
# - "small": Keep smaller box when overlap
|
||||
# - "union": Keep all boxes (preserve overlapping tables/images)
|
||||
# Using "union" to prevent tables from being merged together
|
||||
layout_merge_mode: Optional[str] = Field(
|
||||
default="union",
|
||||
description="How to handle overlapping detection boxes. 'union' preserves all detected regions."
|
||||
)
|
||||
layout_unclip_ratio: Optional[float] = Field(default=None) # None = use PaddleX default
|
||||
|
||||
# Text Detection Parameters
|
||||
@@ -161,13 +169,8 @@ class Settings(BaseSettings):
|
||||
description="Cell detection model for borderless tables. RT-DETR-L provides best accuracy."
|
||||
)
|
||||
|
||||
# Table Cell Boxes Extraction - supplement PPStructureV3 with direct SLANeXt calls
|
||||
# When enabled, directly invokes SLANeXt models to extract cell bounding boxes
|
||||
# which are not exposed by the PPStructureV3 high-level API
|
||||
enable_table_cell_boxes_extraction: bool = Field(
|
||||
default=True,
|
||||
description="Enable direct SLANeXt model calls to extract table cell bounding boxes for accurate PDF layout."
|
||||
)
|
||||
# Note: Table cell boxes are now extracted from table_res_list returned by PPStructureV3
|
||||
# No additional model calls needed - PPStructureV3 provides cell_box_list in table_res_list
|
||||
|
||||
# Formula Recognition Model Configuration (Stage 4)
|
||||
# Available models:
|
||||
|
||||
@@ -40,6 +40,7 @@ from app.schemas.task import (
|
||||
PreprocessingPreviewRequest,
|
||||
PreprocessingPreviewResponse,
|
||||
ImageQualityMetrics,
|
||||
TableDetectionConfig,
|
||||
)
|
||||
from app.services.task_service import task_service
|
||||
from app.services.file_access_service import file_access_service
|
||||
@@ -75,7 +76,8 @@ def process_task_ocr(
|
||||
language: str = 'ch',
|
||||
layout_model: Optional[str] = "chinese",
|
||||
preprocessing_mode: Optional[str] = "auto",
|
||||
preprocessing_config: Optional[dict] = None
|
||||
preprocessing_config: Optional[dict] = None,
|
||||
table_detection_config: Optional[dict] = None
|
||||
):
|
||||
"""
|
||||
Background task to process OCR for a task with dual-track support.
|
||||
@@ -94,6 +96,7 @@ def process_task_ocr(
|
||||
layout_model: Layout detection model ('chinese', 'default', 'cdla')
|
||||
preprocessing_mode: Preprocessing mode ('auto', 'manual', 'disabled')
|
||||
preprocessing_config: Manual preprocessing config dict (contrast, sharpen, binarize)
|
||||
table_detection_config: Table detection config dict (enable_wired_table, enable_wireless_table, enable_region_detection)
|
||||
"""
|
||||
from app.core.database import SessionLocal
|
||||
from app.models.task import Task
|
||||
@@ -106,6 +109,7 @@ def process_task_ocr(
|
||||
logger.info(f"Starting OCR processing for task {task_id}, file: {filename}")
|
||||
logger.info(f"Processing options: dual_track={use_dual_track}, force_track={force_track}, lang={language}")
|
||||
logger.info(f"Preprocessing options: mode={preprocessing_mode}, config={preprocessing_config}")
|
||||
logger.info(f"Table detection options: {table_detection_config}")
|
||||
|
||||
# Convert preprocessing parameters to proper types
|
||||
preprocess_mode_enum = None
|
||||
@@ -122,6 +126,15 @@ def process_task_ocr(
|
||||
binarize=preprocessing_config.get("binarize", False)
|
||||
)
|
||||
|
||||
# Convert table detection config to object
|
||||
table_det_config_obj = None
|
||||
if table_detection_config:
|
||||
table_det_config_obj = TableDetectionConfig(
|
||||
enable_wired_table=table_detection_config.get("enable_wired_table", True),
|
||||
enable_wireless_table=table_detection_config.get("enable_wireless_table", True),
|
||||
enable_region_detection=table_detection_config.get("enable_region_detection", True)
|
||||
)
|
||||
|
||||
# Get task directly by database ID (bypass user isolation for background task)
|
||||
task = db.query(Task).filter(Task.id == task_db_id).first()
|
||||
if not task:
|
||||
@@ -170,7 +183,8 @@ def process_task_ocr(
|
||||
force_track=force_track,
|
||||
layout_model=layout_model,
|
||||
preprocessing_mode=preprocess_mode_enum,
|
||||
preprocessing_config=preprocess_config_obj
|
||||
preprocessing_config=preprocess_config_obj,
|
||||
table_detection_config=table_det_config_obj
|
||||
)
|
||||
else:
|
||||
# Fall back to traditional processing (no force_track support)
|
||||
@@ -181,7 +195,8 @@ def process_task_ocr(
|
||||
output_dir=result_dir,
|
||||
layout_model=layout_model,
|
||||
preprocessing_mode=preprocess_mode_enum,
|
||||
preprocessing_config=preprocess_config_obj
|
||||
preprocessing_config=preprocess_config_obj,
|
||||
table_detection_config=table_det_config_obj
|
||||
)
|
||||
|
||||
# Calculate processing time
|
||||
@@ -754,6 +769,7 @@ async def start_task(
|
||||
- **force_track**: Force specific processing track ('ocr' or 'direct')
|
||||
- **language**: OCR language code (default: 'ch')
|
||||
- **layout_model**: Layout detection model ('chinese', 'default', 'cdla')
|
||||
- **table_detection**: Table detection config (enable_wired_table, enable_wireless_table, enable_region_detection)
|
||||
"""
|
||||
try:
|
||||
# Parse processing options with defaults
|
||||
@@ -781,6 +797,16 @@ async def start_task(
|
||||
}
|
||||
logger.info(f"Preprocessing: mode={preprocessing_mode}, config={preprocessing_config}")
|
||||
|
||||
# Extract table detection options
|
||||
table_detection_config = None
|
||||
if options.table_detection:
|
||||
table_detection_config = {
|
||||
"enable_wired_table": options.table_detection.enable_wired_table,
|
||||
"enable_wireless_table": options.table_detection.enable_wireless_table,
|
||||
"enable_region_detection": options.table_detection.enable_region_detection
|
||||
}
|
||||
logger.info(f"Table detection: {table_detection_config}")
|
||||
|
||||
# Get task details
|
||||
task = task_service.get_task_by_id(
|
||||
db=db,
|
||||
@@ -829,11 +855,12 @@ async def start_task(
|
||||
language=language,
|
||||
layout_model=layout_model,
|
||||
preprocessing_mode=preprocessing_mode,
|
||||
preprocessing_config=preprocessing_config
|
||||
preprocessing_config=preprocessing_config,
|
||||
table_detection_config=table_detection_config
|
||||
)
|
||||
|
||||
logger.info(f"Started OCR processing task {task_id} for user {current_user.email}")
|
||||
logger.info(f"Options: dual_track={use_dual_track}, force_track={force_track}, lang={language}, layout_model={layout_model}, preprocessing={preprocessing_mode}")
|
||||
logger.info(f"Options: dual_track={use_dual_track}, force_track={force_track}, lang={language}, layout_model={layout_model}, preprocessing={preprocessing_mode}, table_detection={table_detection_config}")
|
||||
return task
|
||||
|
||||
except HTTPException:
|
||||
|
||||
@@ -96,6 +96,35 @@ class PreprocessingConfig(BaseModel):
|
||||
default=False,
|
||||
description="Enable binarization (aggressive, for very low contrast). Not recommended for most documents."
|
||||
)
|
||||
remove_scan_artifacts: bool = Field(
|
||||
default=True,
|
||||
description="Remove horizontal scan line artifacts. Recommended for scanned documents to prevent misdetection of scanner light bar lines as table borders."
|
||||
)
|
||||
|
||||
|
||||
class TableDetectionConfig(BaseModel):
|
||||
"""Table detection configuration for PP-StructureV3.
|
||||
|
||||
Controls which table detection modes to enable. PP-StructureV3 uses specialized
|
||||
models for different table types:
|
||||
- Wired (bordered): Tables with visible cell borders/grid lines
|
||||
- Wireless (borderless): Tables without visible borders, relying on alignment
|
||||
- Region detection: Detect table-like regions for better cell structure
|
||||
|
||||
Multiple options can be enabled simultaneously for comprehensive detection.
|
||||
"""
|
||||
enable_wired_table: bool = Field(
|
||||
default=True,
|
||||
description="Enable wired (bordered) table detection. Best for tables with visible grid lines."
|
||||
)
|
||||
enable_wireless_table: bool = Field(
|
||||
default=True,
|
||||
description="Enable wireless (borderless) table detection. Best for tables without visible borders."
|
||||
)
|
||||
enable_region_detection: bool = Field(
|
||||
default=True,
|
||||
description="Enable region detection for better table structure inference."
|
||||
)
|
||||
|
||||
|
||||
class ImageQualityMetrics(BaseModel):
|
||||
@@ -294,6 +323,12 @@ class ProcessingOptions(BaseModel):
|
||||
description="Manual preprocessing config (only used when preprocessing_mode='manual')"
|
||||
)
|
||||
|
||||
# Table detection configuration (OCR track only)
|
||||
table_detection: Optional[TableDetectionConfig] = Field(
|
||||
None,
|
||||
description="Table detection config. If None, all table detection modes are enabled."
|
||||
)
|
||||
|
||||
|
||||
class AnalyzeRequest(BaseModel):
|
||||
"""Document analysis request"""
|
||||
|
||||
362
backend/app/services/cv_table_detector.py
Normal file
362
backend/app/services/cv_table_detector.py
Normal file
@@ -0,0 +1,362 @@
|
||||
"""
|
||||
CV-based Table Line Detection Module
|
||||
|
||||
Uses OpenCV morphological operations to detect table lines and extract cell boundaries.
|
||||
This is more reliable for wired/bordered tables than ML-based cell detection.
|
||||
"""
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from typing import List, Tuple, Optional
|
||||
from pathlib import Path
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CVTableDetector:
|
||||
"""
|
||||
Detects table cell boundaries using computer vision techniques.
|
||||
Works by detecting horizontal and vertical lines in the image.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
min_line_length: int = 30,
|
||||
line_thickness: int = 2,
|
||||
min_cell_width: int = 20,
|
||||
min_cell_height: int = 15
|
||||
):
|
||||
"""
|
||||
Initialize the CV table detector.
|
||||
|
||||
Args:
|
||||
min_line_length: Minimum length of lines to detect (in pixels)
|
||||
line_thickness: Expected thickness of table lines
|
||||
min_cell_width: Minimum width of a valid cell
|
||||
min_cell_height: Minimum height of a valid cell
|
||||
"""
|
||||
self.min_line_length = min_line_length
|
||||
self.line_thickness = line_thickness
|
||||
self.min_cell_width = min_cell_width
|
||||
self.min_cell_height = min_cell_height
|
||||
|
||||
def detect_cells(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
table_bbox: Optional[List[float]] = None
|
||||
) -> List[List[float]]:
|
||||
"""
|
||||
Detect cell boundaries in a table image.
|
||||
|
||||
Args:
|
||||
image: Input image (BGR format)
|
||||
table_bbox: Optional [x1, y1, x2, y2] to crop table region first
|
||||
|
||||
Returns:
|
||||
List of cell bounding boxes [[x1, y1, x2, y2], ...]
|
||||
"""
|
||||
# Crop to table region if bbox provided
|
||||
offset_x, offset_y = 0, 0
|
||||
if table_bbox:
|
||||
x1, y1, x2, y2 = [int(v) for v in table_bbox]
|
||||
offset_x, offset_y = x1, y1
|
||||
image = image[y1:y2, x1:x2]
|
||||
|
||||
if image.size == 0:
|
||||
logger.warning("Empty image after cropping")
|
||||
return []
|
||||
|
||||
# Convert to grayscale
|
||||
if len(image.shape) == 3:
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
else:
|
||||
gray = image
|
||||
|
||||
# Detect lines
|
||||
horizontal_lines, vertical_lines = self._detect_lines(gray)
|
||||
|
||||
if horizontal_lines is None or vertical_lines is None:
|
||||
logger.warning("Failed to detect table lines")
|
||||
return []
|
||||
|
||||
# Find intersections to build grid
|
||||
cells = self._build_cell_grid(horizontal_lines, vertical_lines, gray.shape)
|
||||
|
||||
# Convert to absolute coordinates
|
||||
absolute_cells = []
|
||||
for cell in cells:
|
||||
abs_cell = [
|
||||
cell[0] + offset_x,
|
||||
cell[1] + offset_y,
|
||||
cell[2] + offset_x,
|
||||
cell[3] + offset_y
|
||||
]
|
||||
absolute_cells.append(abs_cell)
|
||||
|
||||
logger.info(f"[CV] Detected {len(absolute_cells)} cells from table lines")
|
||||
return absolute_cells
|
||||
|
||||
def _detect_lines(
|
||||
self,
|
||||
gray: np.ndarray
|
||||
) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
|
||||
"""
|
||||
Detect horizontal and vertical lines using morphological operations.
|
||||
|
||||
Args:
|
||||
gray: Grayscale image
|
||||
|
||||
Returns:
|
||||
Tuple of (horizontal_lines_mask, vertical_lines_mask)
|
||||
"""
|
||||
# Adaptive threshold for better line detection
|
||||
binary = cv2.adaptiveThreshold(
|
||||
gray, 255,
|
||||
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
||||
cv2.THRESH_BINARY_INV,
|
||||
11, 2
|
||||
)
|
||||
|
||||
# Detect horizontal lines
|
||||
h_kernel_length = max(self.min_line_length, gray.shape[1] // 30)
|
||||
horizontal_kernel = cv2.getStructuringElement(
|
||||
cv2.MORPH_RECT, (h_kernel_length, 1)
|
||||
)
|
||||
horizontal_lines = cv2.morphologyEx(
|
||||
binary, cv2.MORPH_OPEN, horizontal_kernel, iterations=2
|
||||
)
|
||||
|
||||
# Detect vertical lines
|
||||
v_kernel_length = max(self.min_line_length, gray.shape[0] // 30)
|
||||
vertical_kernel = cv2.getStructuringElement(
|
||||
cv2.MORPH_RECT, (1, v_kernel_length)
|
||||
)
|
||||
vertical_lines = cv2.morphologyEx(
|
||||
binary, cv2.MORPH_OPEN, vertical_kernel, iterations=2
|
||||
)
|
||||
|
||||
return horizontal_lines, vertical_lines
|
||||
|
||||
def _build_cell_grid(
|
||||
self,
|
||||
horizontal_mask: np.ndarray,
|
||||
vertical_mask: np.ndarray,
|
||||
image_shape: Tuple[int, int]
|
||||
) -> List[List[float]]:
|
||||
"""
|
||||
Build cell grid from detected line masks.
|
||||
|
||||
Args:
|
||||
horizontal_mask: Binary mask of horizontal lines
|
||||
vertical_mask: Binary mask of vertical lines
|
||||
image_shape: (height, width) of the image
|
||||
|
||||
Returns:
|
||||
List of cell bounding boxes
|
||||
"""
|
||||
height, width = image_shape[:2]
|
||||
|
||||
# Combine masks to find table structure
|
||||
table_mask = cv2.add(horizontal_mask, vertical_mask)
|
||||
|
||||
# Find contours (cells are enclosed regions)
|
||||
contours, hierarchy = cv2.findContours(
|
||||
table_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
|
||||
# Method 1: Use contours to find cells
|
||||
cells_from_contours = self._cells_from_contours(contours, hierarchy)
|
||||
|
||||
# Method 2: Use line intersections to build grid
|
||||
cells_from_grid = self._cells_from_line_intersections(
|
||||
horizontal_mask, vertical_mask, height, width
|
||||
)
|
||||
|
||||
# Use whichever method found more valid cells
|
||||
if len(cells_from_grid) >= len(cells_from_contours):
|
||||
return cells_from_grid
|
||||
return cells_from_contours
|
||||
|
||||
def _cells_from_contours(
|
||||
self,
|
||||
contours,
|
||||
hierarchy
|
||||
) -> List[List[float]]:
|
||||
"""Extract cell bounding boxes from contours."""
|
||||
cells = []
|
||||
|
||||
for i, contour in enumerate(contours):
|
||||
x, y, w, h = cv2.boundingRect(contour)
|
||||
|
||||
# Filter by minimum size
|
||||
if w >= self.min_cell_width and h >= self.min_cell_height:
|
||||
# Check if this is an inner contour (cell) not the outer table
|
||||
if hierarchy is not None and hierarchy[0][i][3] != -1:
|
||||
cells.append([float(x), float(y), float(x + w), float(y + h)])
|
||||
|
||||
return cells
|
||||
|
||||
def _cells_from_line_intersections(
|
||||
self,
|
||||
horizontal_mask: np.ndarray,
|
||||
vertical_mask: np.ndarray,
|
||||
height: int,
|
||||
width: int
|
||||
) -> List[List[float]]:
|
||||
"""Build cells from line intersections (grid-based approach)."""
|
||||
# Find horizontal line y-coordinates
|
||||
h_projection = np.sum(horizontal_mask, axis=1)
|
||||
h_lines = self._find_line_positions(h_projection, min_gap=self.min_cell_height)
|
||||
|
||||
# Find vertical line x-coordinates
|
||||
v_projection = np.sum(vertical_mask, axis=0)
|
||||
v_lines = self._find_line_positions(v_projection, min_gap=self.min_cell_width)
|
||||
|
||||
if len(h_lines) < 2 or len(v_lines) < 2:
|
||||
logger.debug(f"Insufficient lines: {len(h_lines)} horizontal, {len(v_lines)} vertical")
|
||||
return []
|
||||
|
||||
# Build cells from grid
|
||||
cells = []
|
||||
for i in range(len(h_lines) - 1):
|
||||
for j in range(len(v_lines) - 1):
|
||||
y1, y2 = h_lines[i], h_lines[i + 1]
|
||||
x1, x2 = v_lines[j], v_lines[j + 1]
|
||||
|
||||
# Validate cell size
|
||||
if (x2 - x1) >= self.min_cell_width and (y2 - y1) >= self.min_cell_height:
|
||||
cells.append([float(x1), float(y1), float(x2), float(y2)])
|
||||
|
||||
return cells
|
||||
|
||||
def _find_line_positions(
|
||||
self,
|
||||
projection: np.ndarray,
|
||||
min_gap: int
|
||||
) -> List[int]:
|
||||
"""
|
||||
Find line positions from projection profile.
|
||||
|
||||
Args:
|
||||
projection: 1D array of pixel sums
|
||||
min_gap: Minimum gap between lines
|
||||
|
||||
Returns:
|
||||
List of line positions
|
||||
"""
|
||||
# Threshold to find peaks (lines)
|
||||
threshold = np.max(projection) * 0.3
|
||||
peaks = projection > threshold
|
||||
|
||||
# Find transitions (line positions)
|
||||
positions = []
|
||||
in_peak = False
|
||||
peak_start = 0
|
||||
|
||||
for i, is_peak in enumerate(peaks):
|
||||
if is_peak and not in_peak:
|
||||
peak_start = i
|
||||
in_peak = True
|
||||
elif not is_peak and in_peak:
|
||||
# End of peak - use center
|
||||
peak_center = (peak_start + i) // 2
|
||||
if not positions or (peak_center - positions[-1]) >= min_gap:
|
||||
positions.append(peak_center)
|
||||
in_peak = False
|
||||
|
||||
return positions
|
||||
|
||||
def detect_and_merge_with_ml(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
table_bbox: List[float],
|
||||
ml_cell_boxes: List[List[float]]
|
||||
) -> List[List[float]]:
|
||||
"""
|
||||
Detect cells using CV and merge/validate with ML-detected boxes.
|
||||
|
||||
CV detection is used as the primary source for wired tables,
|
||||
with ML boxes used to fill gaps or validate.
|
||||
|
||||
Args:
|
||||
image: Input image
|
||||
table_bbox: Table bounding box [x1, y1, x2, y2]
|
||||
ml_cell_boxes: Cell boxes from ML model (RT-DETR-L)
|
||||
|
||||
Returns:
|
||||
Merged/validated cell boxes
|
||||
"""
|
||||
cv_cells = self.detect_cells(image, table_bbox)
|
||||
|
||||
if not cv_cells:
|
||||
# CV detection failed, fall back to ML
|
||||
logger.info("[CV] No cells detected by CV, using ML cells")
|
||||
return ml_cell_boxes
|
||||
|
||||
if not ml_cell_boxes:
|
||||
# Only CV cells available
|
||||
return cv_cells
|
||||
|
||||
# Validate: CV should find structured grid
|
||||
# If CV found significantly fewer cells, there might be merged cells
|
||||
cv_count = len(cv_cells)
|
||||
ml_count = len(ml_cell_boxes)
|
||||
|
||||
logger.info(f"[CV] CV detected {cv_count} cells, ML detected {ml_count} cells")
|
||||
|
||||
# For wired tables, prefer CV detection (cleaner grid)
|
||||
if cv_count >= ml_count * 0.5:
|
||||
# CV found reasonable number of cells
|
||||
return cv_cells
|
||||
else:
|
||||
# CV might have missed cells (possibly due to merged cells)
|
||||
# Try to use ML boxes that don't overlap with CV cells
|
||||
merged = list(cv_cells)
|
||||
for ml_box in ml_cell_boxes:
|
||||
if not self._has_significant_overlap(ml_box, cv_cells):
|
||||
merged.append(ml_box)
|
||||
return merged
|
||||
|
||||
def _has_significant_overlap(
|
||||
self,
|
||||
box: List[float],
|
||||
boxes: List[List[float]],
|
||||
threshold: float = 0.5
|
||||
) -> bool:
|
||||
"""Check if box significantly overlaps with any box in the list."""
|
||||
for other in boxes:
|
||||
iou = self._calculate_iou(box, other)
|
||||
if iou > threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
def _calculate_iou(
|
||||
self,
|
||||
box1: List[float],
|
||||
box2: List[float]
|
||||
) -> float:
|
||||
"""Calculate Intersection over Union of two boxes."""
|
||||
x1 = max(box1[0], box2[0])
|
||||
y1 = max(box1[1], box2[1])
|
||||
x2 = min(box1[2], box2[2])
|
||||
y2 = min(box1[3], box2[3])
|
||||
|
||||
if x2 <= x1 or y2 <= y1:
|
||||
return 0.0
|
||||
|
||||
intersection = (x2 - x1) * (y2 - y1)
|
||||
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
||||
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
||||
union = area1 + area2 - intersection
|
||||
|
||||
return intersection / union if union > 0 else 0.0
|
||||
|
||||
|
||||
def load_image(image_path: str) -> Optional[np.ndarray]:
|
||||
"""Load image from path."""
|
||||
path = Path(image_path)
|
||||
if not path.exists():
|
||||
logger.error(f"Image not found: {image_path}")
|
||||
return None
|
||||
return cv2.imread(str(path))
|
||||
@@ -212,7 +212,8 @@ class GapFillingService:
|
||||
def _is_region_covered(
|
||||
self,
|
||||
region: TextRegion,
|
||||
pp_structure_elements: List[DocumentElement]
|
||||
pp_structure_elements: List[DocumentElement],
|
||||
skip_table_coverage: bool = True
|
||||
) -> bool:
|
||||
"""
|
||||
Check if a raw OCR region is covered by any PP-StructureV3 element.
|
||||
@@ -220,6 +221,9 @@ class GapFillingService:
|
||||
Args:
|
||||
region: Raw OCR text region
|
||||
pp_structure_elements: List of PP-StructureV3 elements
|
||||
skip_table_coverage: If True, don't consider TABLE elements as covering
|
||||
(allows raw OCR text inside tables to pass through
|
||||
for layered rendering)
|
||||
|
||||
Returns:
|
||||
True if the region is covered
|
||||
@@ -228,6 +232,12 @@ class GapFillingService:
|
||||
region_bbox = region.normalized_bbox
|
||||
|
||||
for element in pp_structure_elements:
|
||||
# Skip TABLE elements when checking coverage
|
||||
# This allows raw OCR text inside tables to be preserved
|
||||
# PDF generator will render: table borders + raw text positions
|
||||
if skip_table_coverage and element.type == ElementType.TABLE:
|
||||
continue
|
||||
|
||||
elem_bbox = (
|
||||
element.bbox.x0, element.bbox.y0,
|
||||
element.bbox.x1, element.bbox.y1
|
||||
|
||||
@@ -184,6 +184,99 @@ class LayoutPreprocessingService:
|
||||
|
||||
return normalized
|
||||
|
||||
def remove_scan_artifacts(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
line_thickness: int = 5,
|
||||
min_line_length_ratio: float = 0.3,
|
||||
faint_threshold: int = 30
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Remove horizontal scan line artifacts from scanned documents.
|
||||
|
||||
Scanner light bar artifacts appear as FAINT horizontal lines across the image.
|
||||
Key distinction from table borders:
|
||||
- Scan artifacts are LIGHT/FAINT (close to background color)
|
||||
- Table borders are DARK/BOLD (high contrast)
|
||||
|
||||
Method:
|
||||
1. Detect horizontal edges using Sobel filter
|
||||
2. Filter to keep only FAINT edges (low contrast)
|
||||
3. Find continuous horizontal segments
|
||||
4. Remove only faint horizontal lines while preserving bold table borders
|
||||
|
||||
Args:
|
||||
image: Input image (BGR)
|
||||
line_thickness: Maximum thickness of lines to remove (pixels)
|
||||
min_line_length_ratio: Minimum line length as ratio of image width (0.0-1.0)
|
||||
faint_threshold: Maximum edge strength for "faint" lines (0-255)
|
||||
|
||||
Returns:
|
||||
Image with scan artifacts removed (BGR)
|
||||
"""
|
||||
h, w = image.shape[:2]
|
||||
min_line_length = int(w * min_line_length_ratio)
|
||||
|
||||
# Convert to grayscale for detection
|
||||
if len(image.shape) == 3:
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
else:
|
||||
gray = image.copy()
|
||||
|
||||
# Step 1: Detect horizontal edges using Sobel (vertical gradient)
|
||||
# Scan artifacts will have weak gradients, table borders will have strong gradients
|
||||
sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
|
||||
sobel_abs = np.abs(sobel_y).astype(np.uint8)
|
||||
|
||||
# Step 2: Find FAINT horizontal edges only (low gradient magnitude)
|
||||
# Strong edges (table borders) have high sobel values
|
||||
# Faint edges (scan artifacts) have low sobel values
|
||||
faint_edges = (sobel_abs > 5) & (sobel_abs < faint_threshold)
|
||||
faint_edges = faint_edges.astype(np.uint8) * 255
|
||||
|
||||
# Step 3: Use horizontal morphological operations to find continuous lines
|
||||
horizontal_kernel = cv2.getStructuringElement(
|
||||
cv2.MORPH_RECT,
|
||||
(min_line_length, 1)
|
||||
)
|
||||
|
||||
# Opening removes short segments, keeping only long horizontal lines
|
||||
horizontal_lines = cv2.morphologyEx(
|
||||
faint_edges, cv2.MORPH_OPEN, horizontal_kernel, iterations=1
|
||||
)
|
||||
|
||||
# Dilate slightly to cover the full artifact width
|
||||
dilate_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, line_thickness))
|
||||
line_mask = cv2.dilate(horizontal_lines, dilate_kernel, iterations=1)
|
||||
|
||||
# Check if any artifacts were detected
|
||||
artifact_pixels = np.sum(line_mask > 0)
|
||||
if artifact_pixels < 100:
|
||||
logger.debug("No faint scan artifacts detected")
|
||||
return image
|
||||
|
||||
# Calculate artifact coverage
|
||||
total_pixels = h * w
|
||||
coverage_ratio = artifact_pixels / total_pixels
|
||||
|
||||
# Faint artifacts should cover a small portion of the image
|
||||
if coverage_ratio > 0.05: # More than 5% is suspicious
|
||||
logger.debug(f"Faint artifact detection: coverage={coverage_ratio:.2%} (processing anyway)")
|
||||
|
||||
# Only process if coverage is not excessive
|
||||
if coverage_ratio > 0.15: # More than 15% is definitely too much
|
||||
logger.debug(f"Artifact detection rejected: coverage too high ({coverage_ratio:.2%})")
|
||||
return image
|
||||
|
||||
# Use inpainting to remove artifacts
|
||||
result = cv2.inpaint(image, line_mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)
|
||||
|
||||
logger.info(
|
||||
f"Scan artifacts removed: {artifact_pixels} pixels ({coverage_ratio:.2%}), faint_threshold={faint_threshold}"
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
def scale_for_layout_detection(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
@@ -346,9 +439,13 @@ class LayoutPreprocessingService:
|
||||
# Only enable for extremely low contrast (< 15) which indicates a scan quality issue
|
||||
binarize = False # Disabled by default
|
||||
|
||||
# Scan artifact removal is always enabled in auto mode for scanned documents
|
||||
remove_scan_artifacts = True
|
||||
|
||||
logger.debug(
|
||||
f"Auto config: contrast={contrast} strength={contrast_strength:.2f}, "
|
||||
f"sharpen={sharpen} strength={sharpen_strength:.2f}, binarize={binarize}"
|
||||
f"sharpen={sharpen} strength={sharpen_strength:.2f}, binarize={binarize}, "
|
||||
f"remove_scan_artifacts={remove_scan_artifacts}"
|
||||
)
|
||||
|
||||
return PreprocessingConfig(
|
||||
@@ -356,7 +453,8 @@ class LayoutPreprocessingService:
|
||||
contrast_strength=round(contrast_strength, 2),
|
||||
sharpen=sharpen,
|
||||
sharpen_strength=round(sharpen_strength, 2),
|
||||
binarize=binarize
|
||||
binarize=binarize,
|
||||
remove_scan_artifacts=remove_scan_artifacts
|
||||
)
|
||||
|
||||
def apply_contrast_enhancement(
|
||||
@@ -550,7 +648,8 @@ class LayoutPreprocessingService:
|
||||
config_used=PreprocessingConfig(
|
||||
contrast=PreprocessingContrastEnum.NONE,
|
||||
sharpen=False,
|
||||
binarize=False
|
||||
binarize=False,
|
||||
remove_scan_artifacts=False
|
||||
),
|
||||
quality_metrics=metrics,
|
||||
was_processed=scaling_info.was_scaled, # True if scaling was applied
|
||||
@@ -568,6 +667,13 @@ class LayoutPreprocessingService:
|
||||
processed = scaled_image.copy()
|
||||
was_processed = scaling_info.was_scaled # Start with True if already scaled
|
||||
|
||||
# Step 0: Remove scan artifacts BEFORE any enhancement
|
||||
# This prevents scanner light bar lines from being enhanced and misdetected as table borders
|
||||
if getattr(config, 'remove_scan_artifacts', True): # Default True for backwards compatibility
|
||||
processed = self.remove_scan_artifacts(processed)
|
||||
was_processed = True
|
||||
logger.debug("Applied scan artifact removal")
|
||||
|
||||
# Step 1: Contrast enhancement
|
||||
if config.contrast != PreprocessingContrastEnum.NONE:
|
||||
processed = self.apply_contrast_enhancement(
|
||||
|
||||
@@ -30,7 +30,7 @@ from app.services.layout_preprocessing_service import (
|
||||
get_layout_preprocessing_service,
|
||||
LayoutPreprocessingService,
|
||||
)
|
||||
from app.schemas.task import PreprocessingModeEnum, PreprocessingConfig
|
||||
from app.schemas.task import PreprocessingModeEnum, PreprocessingConfig, TableDetectionConfig
|
||||
|
||||
# Import dual-track components
|
||||
try:
|
||||
@@ -454,7 +454,11 @@ class OCRService:
|
||||
|
||||
return self.ocr_engines[lang]
|
||||
|
||||
def _ensure_structure_engine(self, layout_model: Optional[str] = None) -> PPStructureV3:
|
||||
def _ensure_structure_engine(
|
||||
self,
|
||||
layout_model: Optional[str] = None,
|
||||
table_detection_config: Optional[TableDetectionConfig] = None
|
||||
) -> PPStructureV3:
|
||||
"""
|
||||
Get or create PP-Structure engine for layout analysis with GPU support.
|
||||
Supports layout model selection for different document types.
|
||||
@@ -465,6 +469,10 @@ class OCRService:
|
||||
- "default": PubLayNet-based (best for English documents)
|
||||
- "cdla": CDLA model (alternative for Chinese layout)
|
||||
- None: Use config default
|
||||
table_detection_config: Table detection configuration
|
||||
- enable_wired_table: Enable bordered table detection
|
||||
- enable_wireless_table: Enable borderless table detection
|
||||
- enable_region_detection: Enable region detection
|
||||
|
||||
Returns:
|
||||
PPStructure engine instance
|
||||
@@ -492,6 +500,19 @@ class OCRService:
|
||||
logger.info(f"Layout model changed from {current_model} to {layout_model}, recreating engine")
|
||||
self.structure_engine = None # Force recreation
|
||||
|
||||
# Check if we need to recreate the engine due to different table detection config
|
||||
current_table_config = getattr(self, '_current_table_detection_config', None)
|
||||
if self.structure_engine is not None and table_detection_config:
|
||||
# Compare table detection settings
|
||||
new_config_tuple = (
|
||||
table_detection_config.enable_wired_table,
|
||||
table_detection_config.enable_wireless_table,
|
||||
table_detection_config.enable_region_detection
|
||||
)
|
||||
if current_table_config != new_config_tuple:
|
||||
logger.info(f"Table detection config changed from {current_table_config} to {new_config_tuple}, recreating engine")
|
||||
self.structure_engine = None # Force recreation
|
||||
|
||||
# Use cached engine or create new one
|
||||
if self.structure_engine is None:
|
||||
logger.info(f"Initializing PP-StructureV3 engine (GPU: {self.use_gpu})")
|
||||
@@ -504,6 +525,15 @@ class OCRService:
|
||||
use_table = settings.enable_table_recognition
|
||||
use_seal = settings.enable_seal_recognition
|
||||
use_region = settings.enable_region_detection
|
||||
|
||||
# Apply table detection config overrides if provided
|
||||
if table_detection_config:
|
||||
# If both wired and wireless are disabled, disable table recognition entirely
|
||||
if not table_detection_config.enable_wired_table and not table_detection_config.enable_wireless_table:
|
||||
use_table = False
|
||||
use_region = table_detection_config.enable_region_detection
|
||||
logger.info(f"Table detection config applied: wired={table_detection_config.enable_wired_table}, "
|
||||
f"wireless={table_detection_config.enable_wireless_table}, region={use_region}")
|
||||
layout_threshold = settings.layout_detection_threshold
|
||||
layout_nms = settings.layout_nms_threshold
|
||||
layout_merge = settings.layout_merge_mode
|
||||
@@ -538,6 +568,17 @@ class OCRService:
|
||||
formula_model = settings.formula_recognition_model_name
|
||||
chart_model = settings.chart_recognition_model_name
|
||||
|
||||
# Apply table detection config overrides for individual table types
|
||||
if table_detection_config:
|
||||
if not table_detection_config.enable_wired_table:
|
||||
wired_table_model = None
|
||||
wired_cell_det_model = None
|
||||
logger.info("Wired table detection disabled by config")
|
||||
if not table_detection_config.enable_wireless_table:
|
||||
wireless_table_model = None
|
||||
wireless_cell_det_model = None
|
||||
logger.info("Wireless table detection disabled by config")
|
||||
|
||||
# Text detection/recognition model configuration
|
||||
text_det_model = settings.text_detection_model_name
|
||||
text_rec_model = settings.text_recognition_model_name
|
||||
@@ -641,6 +682,15 @@ class OCRService:
|
||||
# Track model loading for cache management
|
||||
self._model_last_used['structure'] = datetime.now()
|
||||
self._current_layout_model = layout_model # Track current model for recreation check
|
||||
# Track table detection config for recreation check
|
||||
if table_detection_config:
|
||||
self._current_table_detection_config = (
|
||||
table_detection_config.enable_wired_table,
|
||||
table_detection_config.enable_wireless_table,
|
||||
table_detection_config.enable_region_detection
|
||||
)
|
||||
else:
|
||||
self._current_table_detection_config = None
|
||||
|
||||
logger.info(f"PP-StructureV3 engine ready (PaddlePaddle {paddle.__version__}, {'GPU' if self.use_gpu else 'CPU'} mode)")
|
||||
|
||||
@@ -712,6 +762,15 @@ class OCRService:
|
||||
|
||||
self.structure_engine = PPStructureV3(**cpu_kwargs)
|
||||
self._current_layout_model = layout_model # Track current model for recreation check
|
||||
# Track table detection config for recreation check
|
||||
if table_detection_config:
|
||||
self._current_table_detection_config = (
|
||||
table_detection_config.enable_wired_table,
|
||||
table_detection_config.enable_wireless_table,
|
||||
table_detection_config.enable_region_detection
|
||||
)
|
||||
else:
|
||||
self._current_table_detection_config = None
|
||||
logger.info(f"PP-StructureV3 engine ready (CPU mode - fallback, layout_model={settings.layout_detection_model_name})")
|
||||
else:
|
||||
raise
|
||||
@@ -956,7 +1015,8 @@ class OCRService:
|
||||
current_page: int = 0,
|
||||
layout_model: Optional[str] = None,
|
||||
preprocessing_mode: Optional[PreprocessingModeEnum] = None,
|
||||
preprocessing_config: Optional[PreprocessingConfig] = None
|
||||
preprocessing_config: Optional[PreprocessingConfig] = None,
|
||||
table_detection_config: Optional[TableDetectionConfig] = None
|
||||
) -> Dict:
|
||||
"""
|
||||
Process single image with OCR and layout analysis
|
||||
@@ -971,6 +1031,7 @@ class OCRService:
|
||||
layout_model: Layout detection model ('chinese', 'default', 'cdla')
|
||||
preprocessing_mode: Layout preprocessing mode ('auto', 'manual', 'disabled')
|
||||
preprocessing_config: Manual preprocessing config (used when mode='manual')
|
||||
table_detection_config: Table detection config (wired/wireless/region options)
|
||||
|
||||
Returns:
|
||||
Dictionary with OCR results and metadata
|
||||
@@ -1041,7 +1102,8 @@ class OCRService:
|
||||
current_page=page_num - 1, # Convert to 0-based page number for layout data
|
||||
layout_model=layout_model,
|
||||
preprocessing_mode=preprocessing_mode,
|
||||
preprocessing_config=preprocessing_config
|
||||
preprocessing_config=preprocessing_config,
|
||||
table_detection_config=table_detection_config
|
||||
)
|
||||
|
||||
# Accumulate results
|
||||
@@ -1189,7 +1251,8 @@ class OCRService:
|
||||
current_page=current_page,
|
||||
layout_model=layout_model,
|
||||
preprocessing_mode=preprocessing_mode,
|
||||
preprocessing_config=preprocessing_config
|
||||
preprocessing_config=preprocessing_config,
|
||||
table_detection_config=table_detection_config
|
||||
)
|
||||
|
||||
# Generate Markdown
|
||||
@@ -1347,7 +1410,8 @@ class OCRService:
|
||||
current_page: int = 0,
|
||||
layout_model: Optional[str] = None,
|
||||
preprocessing_mode: Optional[PreprocessingModeEnum] = None,
|
||||
preprocessing_config: Optional[PreprocessingConfig] = None
|
||||
preprocessing_config: Optional[PreprocessingConfig] = None,
|
||||
table_detection_config: Optional[TableDetectionConfig] = None
|
||||
) -> Tuple[Optional[Dict], List[Dict]]:
|
||||
"""
|
||||
Analyze document layout using PP-StructureV3 with enhanced element extraction
|
||||
@@ -1359,6 +1423,7 @@ class OCRService:
|
||||
layout_model: Layout detection model ('chinese', 'default', 'cdla')
|
||||
preprocessing_mode: Preprocessing mode ('auto', 'manual', 'disabled')
|
||||
preprocessing_config: Manual preprocessing config (used when mode='manual')
|
||||
table_detection_config: Table detection config (wired/wireless/region options)
|
||||
|
||||
Returns:
|
||||
Tuple of (layout_data, images_metadata)
|
||||
@@ -1376,7 +1441,7 @@ class OCRService:
|
||||
f"Mode: {'CPU fallback' if self._cpu_fallback_active else 'GPU'}"
|
||||
)
|
||||
|
||||
structure_engine = self._ensure_structure_engine(layout_model)
|
||||
structure_engine = self._ensure_structure_engine(layout_model, table_detection_config)
|
||||
|
||||
# Apply image preprocessing for layout detection
|
||||
# Preprocessing includes:
|
||||
@@ -1432,10 +1497,19 @@ class OCRService:
|
||||
# Get scaling info for bbox coordinate restoration
|
||||
scaling_info = preprocessing_result.scaling_info if preprocessing_result else None
|
||||
|
||||
# CV table detection is disabled due to poor performance on complex tables
|
||||
# Issues: 1) Detected boundaries smaller than content
|
||||
# 2) Incorrectly splits merged cells
|
||||
# The ML-based RT-DETR-L detection is currently more reliable.
|
||||
# TODO: Improve CV algorithm with better line detection and grid alignment
|
||||
use_cv_table_detection = False
|
||||
|
||||
result = enhanced_processor.analyze_with_full_structure(
|
||||
image_path, output_dir, current_page,
|
||||
preprocessed_image=preprocessed_image,
|
||||
scaling_info=scaling_info
|
||||
scaling_info=scaling_info,
|
||||
save_visualization=True, # Save layout detection visualization images
|
||||
use_cv_table_detection=use_cv_table_detection
|
||||
)
|
||||
|
||||
if result.get('has_parsing_res_list'):
|
||||
@@ -1673,7 +1747,8 @@ class OCRService:
|
||||
force_track: Optional[str] = None,
|
||||
layout_model: Optional[str] = None,
|
||||
preprocessing_mode: Optional[PreprocessingModeEnum] = None,
|
||||
preprocessing_config: Optional[PreprocessingConfig] = None
|
||||
preprocessing_config: Optional[PreprocessingConfig] = None,
|
||||
table_detection_config: Optional[TableDetectionConfig] = None
|
||||
) -> Union[UnifiedDocument, Dict]:
|
||||
"""
|
||||
Process document using dual-track approach.
|
||||
@@ -1688,6 +1763,7 @@ class OCRService:
|
||||
layout_model: Layout detection model ('chinese', 'default', 'cdla') (used for OCR track only)
|
||||
preprocessing_mode: Layout preprocessing mode ('auto', 'manual', 'disabled')
|
||||
preprocessing_config: Manual preprocessing config (used when mode='manual')
|
||||
table_detection_config: Table detection config (wired/wireless/region options)
|
||||
|
||||
Returns:
|
||||
UnifiedDocument if dual-track is enabled, Dict otherwise
|
||||
@@ -1696,7 +1772,7 @@ class OCRService:
|
||||
# Fallback to traditional OCR processing
|
||||
return self.process_file_traditional(
|
||||
file_path, lang, detect_layout, confidence_threshold, output_dir, layout_model,
|
||||
preprocessing_mode, preprocessing_config
|
||||
preprocessing_mode, preprocessing_config, table_detection_config
|
||||
)
|
||||
|
||||
start_time = datetime.now()
|
||||
@@ -1770,7 +1846,8 @@ class OCRService:
|
||||
confidence_threshold=confidence_threshold,
|
||||
output_dir=output_dir, layout_model=layout_model,
|
||||
preprocessing_mode=preprocessing_mode,
|
||||
preprocessing_config=preprocessing_config
|
||||
preprocessing_config=preprocessing_config,
|
||||
table_detection_config=table_detection_config
|
||||
)
|
||||
|
||||
# Convert OCR result to extract images
|
||||
@@ -1804,7 +1881,7 @@ class OCRService:
|
||||
logger.info("Using OCR track (PaddleOCR)")
|
||||
ocr_result = self.process_file_traditional(
|
||||
file_path, lang, detect_layout, confidence_threshold, output_dir, layout_model,
|
||||
preprocessing_mode, preprocessing_config
|
||||
preprocessing_mode, preprocessing_config, table_detection_config
|
||||
)
|
||||
|
||||
# Convert OCR result to UnifiedDocument using the converter
|
||||
@@ -1835,7 +1912,7 @@ class OCRService:
|
||||
# Fallback to traditional OCR
|
||||
return self.process_file_traditional(
|
||||
file_path, lang, detect_layout, confidence_threshold, output_dir, layout_model,
|
||||
preprocessing_mode, preprocessing_config
|
||||
preprocessing_mode, preprocessing_config, table_detection_config
|
||||
)
|
||||
|
||||
def _merge_ocr_images_into_direct(
|
||||
@@ -1916,7 +1993,8 @@ class OCRService:
|
||||
output_dir: Optional[Path] = None,
|
||||
layout_model: Optional[str] = None,
|
||||
preprocessing_mode: Optional[PreprocessingModeEnum] = None,
|
||||
preprocessing_config: Optional[PreprocessingConfig] = None
|
||||
preprocessing_config: Optional[PreprocessingConfig] = None,
|
||||
table_detection_config: Optional[TableDetectionConfig] = None
|
||||
) -> Dict:
|
||||
"""
|
||||
Traditional OCR processing (legacy method).
|
||||
@@ -1930,6 +2008,7 @@ class OCRService:
|
||||
layout_model: Layout detection model ('chinese', 'default', 'cdla')
|
||||
preprocessing_mode: Layout preprocessing mode ('auto', 'manual', 'disabled')
|
||||
preprocessing_config: Manual preprocessing config (used when mode='manual')
|
||||
table_detection_config: Table detection config (wired/wireless/region options)
|
||||
|
||||
Returns:
|
||||
Dictionary with OCR results in legacy format
|
||||
@@ -1943,7 +2022,7 @@ class OCRService:
|
||||
for i, image_path in enumerate(image_paths):
|
||||
result = self.process_image(
|
||||
image_path, lang, detect_layout, confidence_threshold, output_dir, i, layout_model,
|
||||
preprocessing_mode, preprocessing_config
|
||||
preprocessing_mode, preprocessing_config, table_detection_config
|
||||
)
|
||||
all_results.append(result)
|
||||
|
||||
@@ -1960,7 +2039,7 @@ class OCRService:
|
||||
# Single image or other file
|
||||
return self.process_image(
|
||||
file_path, lang, detect_layout, confidence_threshold, output_dir, 0, layout_model,
|
||||
preprocessing_mode, preprocessing_config
|
||||
preprocessing_mode, preprocessing_config, table_detection_config
|
||||
)
|
||||
|
||||
def _combine_results(self, results: List[Dict]) -> Dict:
|
||||
@@ -2047,7 +2126,8 @@ class OCRService:
|
||||
force_track: Optional[str] = None,
|
||||
layout_model: Optional[str] = None,
|
||||
preprocessing_mode: Optional[PreprocessingModeEnum] = None,
|
||||
preprocessing_config: Optional[PreprocessingConfig] = None
|
||||
preprocessing_config: Optional[PreprocessingConfig] = None,
|
||||
table_detection_config: Optional[TableDetectionConfig] = None
|
||||
) -> Union[UnifiedDocument, Dict]:
|
||||
"""
|
||||
Main processing method with dual-track support.
|
||||
@@ -2063,6 +2143,7 @@ class OCRService:
|
||||
layout_model: Layout detection model ('chinese', 'default', 'cdla') (used for OCR track only)
|
||||
preprocessing_mode: Layout preprocessing mode ('auto', 'manual', 'disabled')
|
||||
preprocessing_config: Manual preprocessing config (used when mode='manual')
|
||||
table_detection_config: Table detection config (wired/wireless/region options)
|
||||
|
||||
Returns:
|
||||
UnifiedDocument if dual-track is enabled and use_dual_track=True,
|
||||
@@ -2075,13 +2156,13 @@ class OCRService:
|
||||
# Use dual-track processing (or forced track)
|
||||
return self.process_with_dual_track(
|
||||
file_path, lang, detect_layout, confidence_threshold, output_dir, force_track, layout_model,
|
||||
preprocessing_mode, preprocessing_config
|
||||
preprocessing_mode, preprocessing_config, table_detection_config
|
||||
)
|
||||
else:
|
||||
# Use traditional OCR processing (no force_track support)
|
||||
return self.process_file_traditional(
|
||||
file_path, lang, detect_layout, confidence_threshold, output_dir, layout_model,
|
||||
preprocessing_mode, preprocessing_config
|
||||
preprocessing_mode, preprocessing_config, table_detection_config
|
||||
)
|
||||
|
||||
def process_legacy(
|
||||
|
||||
@@ -590,8 +590,17 @@ class OCRToUnifiedConverter:
|
||||
# Prepare content based on element type
|
||||
if element_type == ElementType.TABLE:
|
||||
# For tables, use TableData as content
|
||||
# Pass cell_boxes for accurate cell positioning
|
||||
table_data = self._extract_table_data(elem_data)
|
||||
content = table_data if table_data else elem_data.get('content', '')
|
||||
|
||||
# Preserve cell_boxes and embedded_images in metadata for PDF generation
|
||||
# These are extracted by PP-StructureV3 and provide accurate cell positioning
|
||||
if 'cell_boxes' in elem_data:
|
||||
elem_data.setdefault('metadata', {})['cell_boxes'] = elem_data['cell_boxes']
|
||||
elem_data['metadata']['cell_boxes_source'] = elem_data.get('cell_boxes_source', 'table_res_list')
|
||||
if 'embedded_images' in elem_data:
|
||||
elem_data.setdefault('metadata', {})['embedded_images'] = elem_data['embedded_images']
|
||||
elif element_type in [ElementType.IMAGE, ElementType.FIGURE]:
|
||||
# For images, use metadata dict as content
|
||||
content = {
|
||||
|
||||
@@ -447,7 +447,8 @@ class PDFGeneratorService:
|
||||
'text': text_content,
|
||||
'bbox': bbox_polygon,
|
||||
'confidence': element.confidence or 1.0,
|
||||
'page': page_num
|
||||
'page': page_num,
|
||||
'element_type': element.type.value # Include element type for styling
|
||||
}
|
||||
|
||||
# Include style information if available (for Direct track)
|
||||
@@ -466,13 +467,24 @@ class PDFGeneratorService:
|
||||
else:
|
||||
html_content = str(element.content)
|
||||
|
||||
layout_elements.append({
|
||||
table_element = {
|
||||
'type': 'table',
|
||||
'content': html_content,
|
||||
'bbox': [element.bbox.x0, element.bbox.y0,
|
||||
element.bbox.x1, element.bbox.y1],
|
||||
'page': page_num - 1 # layout uses 0-based
|
||||
})
|
||||
}
|
||||
|
||||
# Preserve cell_boxes and embedded_images from metadata
|
||||
# These are extracted by PP-StructureV3 and used for accurate table rendering
|
||||
if element.metadata:
|
||||
if 'cell_boxes' in element.metadata:
|
||||
table_element['cell_boxes'] = element.metadata['cell_boxes']
|
||||
table_element['cell_boxes_source'] = element.metadata.get('cell_boxes_source', 'metadata')
|
||||
if 'embedded_images' in element.metadata:
|
||||
table_element['embedded_images'] = element.metadata['embedded_images']
|
||||
|
||||
layout_elements.append(table_element)
|
||||
|
||||
# Add bbox to images_metadata for text overlap filtering
|
||||
# (no actual image file, just bbox for filtering)
|
||||
@@ -484,10 +496,10 @@ class PDFGeneratorService:
|
||||
'element_id': element.element_id
|
||||
})
|
||||
|
||||
# Handle image/visual elements
|
||||
# Handle image/visual elements (including stamps/seals)
|
||||
elif element.is_visual or element.type in [
|
||||
ElementType.IMAGE, ElementType.FIGURE, ElementType.CHART,
|
||||
ElementType.DIAGRAM, ElementType.LOGO
|
||||
ElementType.DIAGRAM, ElementType.LOGO, ElementType.STAMP
|
||||
]:
|
||||
# Get image path using fallback logic
|
||||
image_path = self._get_image_path(element)
|
||||
@@ -729,13 +741,13 @@ class PDFGeneratorService:
|
||||
regions_to_avoid.append(element) # Tables are exclusion regions
|
||||
elif element.is_visual or element.type in [
|
||||
ElementType.IMAGE, ElementType.FIGURE,
|
||||
ElementType.CHART, ElementType.DIAGRAM, ElementType.LOGO
|
||||
ElementType.CHART, ElementType.DIAGRAM, ElementType.LOGO, ElementType.STAMP
|
||||
]:
|
||||
image_elements.append(element)
|
||||
# Only add real images to exclusion regions, NOT charts/diagrams
|
||||
# Charts often have large bounding boxes that include text labels
|
||||
# which should be rendered as selectable text on top
|
||||
if element.type in [ElementType.IMAGE, ElementType.FIGURE, ElementType.LOGO]:
|
||||
if element.type in [ElementType.IMAGE, ElementType.FIGURE, ElementType.LOGO, ElementType.STAMP]:
|
||||
regions_to_avoid.append(element)
|
||||
elif element.type == ElementType.LIST_ITEM:
|
||||
list_elements.append(element)
|
||||
@@ -934,11 +946,14 @@ class PDFGeneratorService:
|
||||
# Create PDF canvas with initial page size (will be updated per page)
|
||||
pdf_canvas = canvas.Canvas(str(output_path), pagesize=(target_width, target_height))
|
||||
|
||||
# Filter text regions to avoid overlap with tables/images
|
||||
regions_to_avoid = images_metadata
|
||||
# LAYERED RENDERING: Exclude tables from regions_to_avoid
|
||||
# Text inside tables will be rendered at raw OCR positions (via GapFillingService)
|
||||
# while table borders are drawn separately using cell_boxes
|
||||
# Only avoid overlap with actual images/figures/charts
|
||||
regions_to_avoid = [img for img in images_metadata if img.get('type') != 'table']
|
||||
table_count = len([img for img in images_metadata if img.get('type') == 'table'])
|
||||
|
||||
logger.info(f"過濾文字區域: {len(regions_to_avoid)} 個區域需要避免 (含 {table_count} 個表格)")
|
||||
logger.info(f"過濾文字區域: {len(regions_to_avoid)} 個區域需要避免 (不含表格), {table_count} 個表格使用分層渲染")
|
||||
|
||||
filtered_text_regions = self._filter_text_in_regions(text_regions, regions_to_avoid)
|
||||
|
||||
@@ -1042,7 +1057,8 @@ class PDFGeneratorService:
|
||||
for table_elem in page_table_regions:
|
||||
self.draw_table_region(
|
||||
pdf_canvas, table_elem, images_metadata,
|
||||
current_target_h, current_scale_w, current_scale_h
|
||||
current_target_h, current_scale_w, current_scale_h,
|
||||
result_dir=json_parent_dir
|
||||
)
|
||||
|
||||
# 3. Draw text (top layer)
|
||||
@@ -1542,8 +1558,8 @@ class PDFGeneratorService:
|
||||
logger.info(f"[文字] '{text[:30]}' → PDF位置: ({pdf_x:.1f}, {pdf_y:.1f}), 字體:{font_size:.1f}pt, 寬x高:{bbox_width:.0f}x{bbox_height:.0f}, 行數:{num_lines}")
|
||||
|
||||
# Set font with track-specific styling
|
||||
# Note: OCR track has no StyleInfo (extracted from images), so no advanced formatting
|
||||
style_info = region.get('style')
|
||||
element_type = region.get('element_type', 'text')
|
||||
is_direct_track = (self.current_processing_track == ProcessingTrack.DIRECT or
|
||||
self.current_processing_track == ProcessingTrack.HYBRID)
|
||||
|
||||
@@ -1555,9 +1571,25 @@ class PDFGeneratorService:
|
||||
font_size = pdf_canvas._fontsize
|
||||
logger.debug(f"Applied Direct track style: font={font_name}, size={font_size}")
|
||||
else:
|
||||
# OCR track or no style: Use simple font selection
|
||||
# OCR track or no style: Use simple font selection with element-type based styling
|
||||
font_name = self.font_name if self.font_registered else 'Helvetica'
|
||||
pdf_canvas.setFont(font_name, font_size)
|
||||
|
||||
# Apply element-type specific styling (for OCR track)
|
||||
if element_type == 'title':
|
||||
# Titles: use larger, bold font
|
||||
font_size = min(font_size * 1.3, 36) # 30% larger, max 36pt
|
||||
pdf_canvas.setFont(font_name, font_size)
|
||||
logger.debug(f"Applied title style: size={font_size:.1f}")
|
||||
elif element_type == 'header':
|
||||
# Headers: slightly larger
|
||||
font_size = min(font_size * 1.15, 24) # 15% larger, max 24pt
|
||||
pdf_canvas.setFont(font_name, font_size)
|
||||
elif element_type == 'caption':
|
||||
# Captions: slightly smaller, italic if available
|
||||
font_size = max(font_size * 0.9, 6) # 10% smaller, min 6pt
|
||||
pdf_canvas.setFont(font_name, font_size)
|
||||
else:
|
||||
pdf_canvas.setFont(font_name, font_size)
|
||||
|
||||
# Handle line breaks (split text by newlines)
|
||||
# OCR track: simple left-aligned rendering
|
||||
@@ -1726,7 +1758,8 @@ class PDFGeneratorService:
|
||||
images_metadata: List[Dict],
|
||||
page_height: float,
|
||||
scale_w: float = 1.0,
|
||||
scale_h: float = 1.0
|
||||
scale_h: float = 1.0,
|
||||
result_dir: Optional[Path] = None
|
||||
):
|
||||
"""
|
||||
Draw a table region by parsing HTML and rebuilding with ReportLab Table
|
||||
@@ -1738,13 +1771,27 @@ class PDFGeneratorService:
|
||||
page_height: Height of page
|
||||
scale_w: Scale factor for X coordinates (PDF width / OCR width)
|
||||
scale_h: Scale factor for Y coordinates (PDF height / OCR height)
|
||||
result_dir: Directory containing result files (for embedded images)
|
||||
"""
|
||||
try:
|
||||
html_content = table_element.get('content', '')
|
||||
if not html_content:
|
||||
return
|
||||
|
||||
# Parse HTML to extract table structure
|
||||
# Try to use cell_boxes for direct rendering first (more accurate)
|
||||
cell_boxes = table_element.get('cell_boxes', [])
|
||||
if cell_boxes:
|
||||
logger.info(f"[TABLE] Using cell_boxes direct rendering ({len(cell_boxes)} cells)")
|
||||
success = self._draw_table_with_cell_boxes(
|
||||
pdf_canvas, table_element, page_height,
|
||||
scale_w, scale_h, result_dir
|
||||
)
|
||||
if success:
|
||||
return # Successfully rendered with cell_boxes
|
||||
|
||||
logger.info("[TABLE] Falling back to ReportLab Table")
|
||||
|
||||
# Fallback: Parse HTML to extract table structure and use ReportLab Table
|
||||
parser = HTMLTableParser()
|
||||
parser.feed(html_content)
|
||||
|
||||
@@ -1901,14 +1948,18 @@ class PDFGeneratorService:
|
||||
logger.info(f"[TABLE] Using cell_boxes col widths (scaled)")
|
||||
else:
|
||||
col_widths = [table_width / max_cols] * max_cols
|
||||
logger.info(f"[TABLE] Using equal distribution col widths")
|
||||
logger.info(f"[TABLE] Using equal distribution col widths: {table_width/max_cols:.1f} each")
|
||||
|
||||
# Row heights are used optionally (ReportLab can auto-size)
|
||||
row_heights = None
|
||||
# Row heights - ALWAYS use to ensure table fits bbox properly
|
||||
# Use computed heights from cell_boxes, or uniform distribution as fallback
|
||||
if computed_row_heights:
|
||||
# Scale row_heights to PDF coordinates
|
||||
row_heights = [h * scale_h for h in computed_row_heights]
|
||||
logger.debug(f"[TABLE] Cell_boxes row heights available (scaled)")
|
||||
logger.info(f"[TABLE] Using cell_boxes row heights (scaled)")
|
||||
else:
|
||||
# Uniform distribution based on table bbox - ensures table fills its allocated space
|
||||
row_heights = [table_height / num_rows] * num_rows
|
||||
logger.info(f"[TABLE] Using uniform row heights: {table_height/num_rows:.1f} each")
|
||||
|
||||
# Create ReportLab Table
|
||||
# Use smaller font to fit content with auto-wrap
|
||||
@@ -1932,12 +1983,10 @@ class PDFGeneratorService:
|
||||
escaped_text = cell_text.replace('&', '&').replace('<', '<').replace('>', '>')
|
||||
reportlab_data[row_idx][col_idx] = Paragraph(escaped_text, cell_style)
|
||||
|
||||
# Create table with computed col widths
|
||||
# Note: We don't use row_heights even when available from cell_boxes because:
|
||||
# 1. ReportLab's auto-sizing handles content overflow better
|
||||
# 2. Fixed heights can cause text clipping when content exceeds cell size
|
||||
# 3. The col_widths from cell_boxes provide the main layout benefit
|
||||
table = Table(reportlab_data, colWidths=col_widths)
|
||||
# Create table with col widths and row heights
|
||||
# Always use row_heights to ensure table fits bbox properly
|
||||
table = Table(reportlab_data, colWidths=col_widths, rowHeights=row_heights)
|
||||
logger.info(f"[TABLE] Created with {len(col_widths)} cols, {len(row_heights)} rows")
|
||||
|
||||
# Apply table style
|
||||
style = TableStyle([
|
||||
@@ -1974,26 +2023,303 @@ class PDFGeneratorService:
|
||||
scale_y = table_height / actual_height if actual_height > table_height else 1.0
|
||||
scale_factor = min(scale_x, scale_y) # Use smaller scale to fit both dimensions
|
||||
|
||||
# Calculate the table top position in PDF coordinates
|
||||
# ReportLab uses bottom-left origin, so we need to position from TOP
|
||||
pdf_y_top = page_height - ocr_y_top # Top of table in PDF coords
|
||||
|
||||
# Calculate the actual bottom position based on scaled height
|
||||
# Table should be positioned so its TOP aligns with the bbox top
|
||||
scaled_height = actual_height * scale_factor
|
||||
pdf_y_bottom = pdf_y_top - scaled_height # Bottom of scaled table
|
||||
|
||||
logger.info(f"[表格] PDF座標: top={pdf_y_top:.0f}, bottom={pdf_y_bottom:.0f}, scaled_height={scaled_height:.0f}")
|
||||
|
||||
if scale_factor < 1.0:
|
||||
logger.info(f"[表格] 縮放比例: {scale_factor:.2f} (需要縮小以適應 bbox)")
|
||||
# Apply scaling transformation
|
||||
pdf_canvas.saveState()
|
||||
pdf_canvas.translate(pdf_x, pdf_y)
|
||||
pdf_canvas.translate(pdf_x, pdf_y_bottom)
|
||||
pdf_canvas.scale(scale_factor, scale_factor)
|
||||
# Draw at origin since we've already translated
|
||||
table.drawOn(pdf_canvas, 0, 0)
|
||||
pdf_canvas.restoreState()
|
||||
else:
|
||||
# Draw table at position without scaling
|
||||
table.drawOn(pdf_canvas, pdf_x, pdf_y)
|
||||
# pdf_y should be the bottom of the table
|
||||
table.drawOn(pdf_canvas, pdf_x, pdf_y_bottom)
|
||||
|
||||
logger.info(f"Drew table at ({pdf_x:.0f}, {pdf_y:.0f}) size {table_width:.0f}x{table_height:.0f} with {len(rows)} rows")
|
||||
logger.info(f"Drew table at ({pdf_x:.0f}, {pdf_y_bottom:.0f}) size {table_width:.0f}x{scaled_height:.0f} with {len(rows)} rows")
|
||||
|
||||
# Draw embedded images (images detected inside the table region)
|
||||
embedded_images = table_element.get('embedded_images', [])
|
||||
if embedded_images and result_dir:
|
||||
logger.info(f"[TABLE] Drawing {len(embedded_images)} embedded images")
|
||||
for emb_img in embedded_images:
|
||||
self._draw_embedded_image(
|
||||
pdf_canvas, emb_img, page_height, result_dir, scale_w, scale_h
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to draw table region: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
def _draw_embedded_image(
|
||||
self,
|
||||
pdf_canvas: canvas.Canvas,
|
||||
emb_img: Dict,
|
||||
page_height: float,
|
||||
result_dir: Path,
|
||||
scale_w: float = 1.0,
|
||||
scale_h: float = 1.0
|
||||
):
|
||||
"""Draw an embedded image inside a table region."""
|
||||
try:
|
||||
# Get image path
|
||||
saved_path = emb_img.get('saved_path', '')
|
||||
if not saved_path:
|
||||
return
|
||||
|
||||
# Construct full path
|
||||
image_path = result_dir / saved_path
|
||||
if not image_path.exists():
|
||||
image_path = result_dir / Path(saved_path).name
|
||||
|
||||
if not image_path.exists():
|
||||
logger.warning(f"Embedded image not found: {saved_path}")
|
||||
return
|
||||
|
||||
# Get bbox from embedded image data
|
||||
bbox = emb_img.get('bbox', [])
|
||||
if not bbox or len(bbox) < 4:
|
||||
logger.warning(f"No bbox for embedded image: {saved_path}")
|
||||
return
|
||||
|
||||
# Calculate position (bbox is [x0, y0, x1, y1])
|
||||
x0, y0, x1, y1 = bbox[0], bbox[1], bbox[2], bbox[3]
|
||||
|
||||
# Apply scaling
|
||||
x0_scaled = x0 * scale_w
|
||||
y0_scaled = y0 * scale_h
|
||||
x1_scaled = x1 * scale_w
|
||||
y1_scaled = y1 * scale_h
|
||||
|
||||
width = x1_scaled - x0_scaled
|
||||
height = y1_scaled - y0_scaled
|
||||
|
||||
# Transform Y coordinate (ReportLab uses bottom-left origin)
|
||||
pdf_x = x0_scaled
|
||||
pdf_y = page_height - y1_scaled
|
||||
|
||||
# Draw the image
|
||||
from reportlab.lib.utils import ImageReader
|
||||
img_reader = ImageReader(str(image_path))
|
||||
pdf_canvas.drawImage(
|
||||
img_reader, pdf_x, pdf_y, width, height,
|
||||
preserveAspectRatio=True, mask='auto'
|
||||
)
|
||||
|
||||
logger.info(f"Drew embedded image at ({pdf_x:.0f}, {pdf_y:.0f}) size {width:.0f}x{height:.0f}")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to draw embedded image: {e}")
|
||||
|
||||
def _normalize_cell_boxes_to_grid(
|
||||
self,
|
||||
cell_boxes: List[List[float]],
|
||||
threshold: float = 10.0
|
||||
) -> List[List[float]]:
|
||||
"""
|
||||
Normalize cell boxes to create a proper aligned grid.
|
||||
|
||||
Groups nearby coordinates and snaps them to a common value,
|
||||
eliminating the 2-11 pixel variations that cause skewed tables.
|
||||
|
||||
Args:
|
||||
cell_boxes: List of cell bboxes [[x1,y1,x2,y2], ...]
|
||||
threshold: Maximum distance to consider coordinates as "same line"
|
||||
|
||||
Returns:
|
||||
Normalized cell_boxes with aligned coordinates
|
||||
"""
|
||||
if not cell_boxes or len(cell_boxes) < 2:
|
||||
return cell_boxes
|
||||
|
||||
# Collect all X and Y coordinates
|
||||
x_coords = [] # (value, box_idx, is_x1)
|
||||
y_coords = [] # (value, box_idx, is_y1)
|
||||
|
||||
for i, box in enumerate(cell_boxes):
|
||||
x1, y1, x2, y2 = box[0], box[1], box[2], box[3]
|
||||
x_coords.append((x1, i, True)) # x1 (left)
|
||||
x_coords.append((x2, i, False)) # x2 (right)
|
||||
y_coords.append((y1, i, True)) # y1 (top)
|
||||
y_coords.append((y2, i, False)) # y2 (bottom)
|
||||
|
||||
def cluster_and_normalize(coords, threshold):
|
||||
"""Cluster nearby coordinates and return mapping to normalized values."""
|
||||
if not coords:
|
||||
return {}
|
||||
|
||||
# Sort by value
|
||||
sorted_coords = sorted(coords, key=lambda x: x[0])
|
||||
|
||||
# Cluster nearby values
|
||||
clusters = []
|
||||
current_cluster = [sorted_coords[0]]
|
||||
|
||||
for coord in sorted_coords[1:]:
|
||||
if coord[0] - current_cluster[-1][0] <= threshold:
|
||||
current_cluster.append(coord)
|
||||
else:
|
||||
clusters.append(current_cluster)
|
||||
current_cluster = [coord]
|
||||
clusters.append(current_cluster)
|
||||
|
||||
# Create mapping: (box_idx, is_first) -> normalized value
|
||||
mapping = {}
|
||||
for cluster in clusters:
|
||||
# Use average of cluster as normalized value
|
||||
avg_value = sum(c[0] for c in cluster) / len(cluster)
|
||||
for _, box_idx, is_first in cluster:
|
||||
mapping[(box_idx, is_first)] = avg_value
|
||||
|
||||
return mapping
|
||||
|
||||
x_mapping = cluster_and_normalize(x_coords, threshold)
|
||||
y_mapping = cluster_and_normalize(y_coords, threshold)
|
||||
|
||||
# Create normalized cell boxes
|
||||
normalized_boxes = []
|
||||
for i, box in enumerate(cell_boxes):
|
||||
x1_norm = x_mapping.get((i, True), box[0])
|
||||
x2_norm = x_mapping.get((i, False), box[2])
|
||||
y1_norm = y_mapping.get((i, True), box[1])
|
||||
y2_norm = y_mapping.get((i, False), box[3])
|
||||
normalized_boxes.append([x1_norm, y1_norm, x2_norm, y2_norm])
|
||||
|
||||
logger.debug(f"[TABLE] Normalized {len(cell_boxes)} cell boxes to grid")
|
||||
return normalized_boxes
|
||||
|
||||
def _draw_table_with_cell_boxes(
|
||||
self,
|
||||
pdf_canvas: canvas.Canvas,
|
||||
table_element: Dict,
|
||||
page_height: float,
|
||||
scale_w: float = 1.0,
|
||||
scale_h: float = 1.0,
|
||||
result_dir: Optional[Path] = None
|
||||
):
|
||||
"""
|
||||
Draw table borders using cell_boxes for accurate positioning.
|
||||
|
||||
LAYERED RENDERING APPROACH:
|
||||
- This method ONLY draws cell borders and embedded images
|
||||
- Text is rendered separately using raw OCR positions (via GapFillingService)
|
||||
- This decouples visual structure (borders) from content (text)
|
||||
|
||||
FALLBACK: If cell_boxes are incomplete, always draws the outer table
|
||||
border using the table's bbox to ensure table boundaries are visible.
|
||||
|
||||
Args:
|
||||
pdf_canvas: ReportLab canvas object
|
||||
table_element: Table element dict with cell_boxes
|
||||
page_height: Height of page in PDF coordinates
|
||||
scale_w: Scale factor for X coordinates
|
||||
scale_h: Scale factor for Y coordinates
|
||||
result_dir: Directory containing result files (for embedded images)
|
||||
"""
|
||||
try:
|
||||
cell_boxes = table_element.get('cell_boxes', [])
|
||||
|
||||
# Always draw outer table border first (fallback for incomplete cell_boxes)
|
||||
table_bbox = table_element.get('bbox', [])
|
||||
if table_bbox and len(table_bbox) >= 4:
|
||||
# Handle different bbox formats (list or dict)
|
||||
if isinstance(table_bbox, dict):
|
||||
tx1 = float(table_bbox.get('x0', 0))
|
||||
ty1 = float(table_bbox.get('y0', 0))
|
||||
tx2 = float(table_bbox.get('x1', 0))
|
||||
ty2 = float(table_bbox.get('y1', 0))
|
||||
else:
|
||||
tx1, ty1, tx2, ty2 = table_bbox[:4]
|
||||
|
||||
# Apply scaling
|
||||
tx1_scaled = tx1 * scale_w
|
||||
ty1_scaled = ty1 * scale_h
|
||||
tx2_scaled = tx2 * scale_w
|
||||
ty2_scaled = ty2 * scale_h
|
||||
|
||||
table_width = tx2_scaled - tx1_scaled
|
||||
table_height = ty2_scaled - ty1_scaled
|
||||
|
||||
# Transform Y coordinate (PDF uses bottom-left origin)
|
||||
pdf_x = tx1_scaled
|
||||
pdf_y = page_height - ty2_scaled # Bottom of table in PDF coords
|
||||
|
||||
# Draw outer table border (slightly thicker for visibility)
|
||||
pdf_canvas.setStrokeColor(colors.black)
|
||||
pdf_canvas.setLineWidth(1.0)
|
||||
pdf_canvas.rect(pdf_x, pdf_y, table_width, table_height, stroke=1, fill=0)
|
||||
logger.info(f"[TABLE] Drew outer table border at [{int(tx1)},{int(ty1)},{int(tx2)},{int(ty2)}]")
|
||||
|
||||
if not cell_boxes:
|
||||
logger.warning("[TABLE] No cell_boxes available, only outer border drawn")
|
||||
# Still draw embedded images even without cell borders
|
||||
embedded_images = table_element.get('embedded_images', [])
|
||||
if embedded_images and result_dir:
|
||||
for emb_img in embedded_images:
|
||||
self._draw_embedded_image(
|
||||
pdf_canvas, emb_img, page_height, result_dir, scale_w, scale_h
|
||||
)
|
||||
return True # Outer border drawn successfully
|
||||
|
||||
# Normalize cell boxes to create aligned grid
|
||||
cell_boxes = self._normalize_cell_boxes_to_grid(cell_boxes)
|
||||
|
||||
logger.info(f"[TABLE] Drawing {len(cell_boxes)} cell borders (layered mode, grid-aligned)")
|
||||
|
||||
# Draw each cell border
|
||||
for box in cell_boxes:
|
||||
x1, y1, x2, y2 = box[0], box[1], box[2], box[3]
|
||||
|
||||
# Apply scaling
|
||||
x1_scaled = x1 * scale_w
|
||||
y1_scaled = y1 * scale_h
|
||||
x2_scaled = x2 * scale_w
|
||||
y2_scaled = y2 * scale_h
|
||||
|
||||
cell_width = x2_scaled - x1_scaled
|
||||
cell_height = y2_scaled - y1_scaled
|
||||
|
||||
# Transform Y coordinate (PDF uses bottom-left origin)
|
||||
pdf_x = x1_scaled
|
||||
pdf_y = page_height - y2_scaled # Bottom of cell in PDF coords
|
||||
|
||||
# Draw cell border only (no fill, no text)
|
||||
pdf_canvas.setStrokeColor(colors.black)
|
||||
pdf_canvas.setLineWidth(0.5)
|
||||
pdf_canvas.rect(pdf_x, pdf_y, cell_width, cell_height, stroke=1, fill=0)
|
||||
|
||||
logger.info(f"[TABLE] Drew {len(cell_boxes)} cell borders")
|
||||
|
||||
# Draw embedded images
|
||||
embedded_images = table_element.get('embedded_images', [])
|
||||
if embedded_images and result_dir:
|
||||
logger.info(f"[TABLE] Drawing {len(embedded_images)} embedded images")
|
||||
for emb_img in embedded_images:
|
||||
self._draw_embedded_image(
|
||||
pdf_canvas, emb_img, page_height, result_dir, scale_w, scale_h
|
||||
)
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"[TABLE] Failed to draw cell borders: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
def draw_image_region(
|
||||
self,
|
||||
pdf_canvas: canvas.Canvas,
|
||||
@@ -2923,12 +3249,29 @@ class PDFGeneratorService:
|
||||
from reportlab.platypus import Table, TableStyle
|
||||
from reportlab.lib import colors
|
||||
|
||||
# Determine number of rows and columns for cell_boxes calculation
|
||||
num_rows = len(rows)
|
||||
max_cols = max(len(row['cells']) for row in rows) if rows else 0
|
||||
|
||||
# Use original column widths from extraction if available
|
||||
# Otherwise let ReportLab auto-calculate
|
||||
# Otherwise try to compute from cell_boxes (from PP-StructureV3)
|
||||
col_widths = None
|
||||
if element.metadata and 'column_widths' in element.metadata:
|
||||
col_widths = element.metadata['column_widths']
|
||||
logger.debug(f"Using extracted column widths: {col_widths}")
|
||||
elif element.metadata and 'cell_boxes' in element.metadata:
|
||||
# Use cell_boxes from PP-StructureV3 for accurate column/row sizing
|
||||
cell_boxes = element.metadata['cell_boxes']
|
||||
cell_boxes_source = element.metadata.get('cell_boxes_source', 'unknown')
|
||||
table_bbox_list = [bbox.x0, bbox.y0, bbox.x1, bbox.y1]
|
||||
logger.info(f"[TABLE] Using {len(cell_boxes)} cell boxes from {cell_boxes_source}")
|
||||
|
||||
computed_col_widths, computed_row_heights = self._compute_table_grid_from_cell_boxes(
|
||||
cell_boxes, table_bbox_list, num_rows, max_cols
|
||||
)
|
||||
if computed_col_widths:
|
||||
col_widths = computed_col_widths
|
||||
logger.info(f"[TABLE] Computed {len(col_widths)} column widths from cell_boxes")
|
||||
|
||||
# NOTE: Don't use rowHeights from extraction - it causes content overlap
|
||||
# The extracted row heights are based on cell boundaries, not text content height.
|
||||
|
||||
@@ -26,9 +26,11 @@ import paddle
|
||||
from paddleocr import PPStructureV3
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import cv2
|
||||
from app.models.unified_document import ElementType
|
||||
from app.core.config import settings
|
||||
from app.services.memory_manager import prediction_context
|
||||
from app.services.cv_table_detector import CVTableDetector
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -62,6 +64,7 @@ class PPStructureEnhanced:
|
||||
'watermark': ElementType.WATERMARK,
|
||||
'signature': ElementType.SIGNATURE,
|
||||
'stamp': ElementType.STAMP,
|
||||
'seal': ElementType.STAMP, # PP-StructureV3 may use 'seal' label
|
||||
'logo': ElementType.LOGO,
|
||||
'barcode': ElementType.BARCODE,
|
||||
'qr-code': ElementType.QR_CODE,
|
||||
@@ -80,183 +83,15 @@ class PPStructureEnhanced:
|
||||
"""
|
||||
self.structure_engine = structure_engine
|
||||
|
||||
# Lazy-loaded SLANeXt models for cell boxes extraction
|
||||
# These are loaded on-demand when enable_table_cell_boxes_extraction is True
|
||||
self._slanet_wired_model = None
|
||||
self._slanet_wireless_model = None
|
||||
self._table_cls_model = None
|
||||
|
||||
def _get_slanet_model(self, is_wired: bool = True):
|
||||
"""
|
||||
Get or create SLANeXt model for cell boxes extraction (lazy loading).
|
||||
|
||||
Args:
|
||||
is_wired: True for wired (bordered) tables, False for wireless
|
||||
|
||||
Returns:
|
||||
SLANeXt model instance or None if loading fails
|
||||
"""
|
||||
if not settings.enable_table_cell_boxes_extraction:
|
||||
return None
|
||||
|
||||
try:
|
||||
from paddlex import create_model
|
||||
|
||||
if is_wired:
|
||||
if self._slanet_wired_model is None:
|
||||
model_name = settings.wired_table_model_name or "SLANeXt_wired"
|
||||
logger.info(f"Loading SLANeXt wired model: {model_name}")
|
||||
self._slanet_wired_model = create_model(model_name)
|
||||
return self._slanet_wired_model
|
||||
else:
|
||||
if self._slanet_wireless_model is None:
|
||||
model_name = settings.wireless_table_model_name or "SLANeXt_wireless"
|
||||
logger.info(f"Loading SLANeXt wireless model: {model_name}")
|
||||
self._slanet_wireless_model = create_model(model_name)
|
||||
return self._slanet_wireless_model
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to load SLANeXt model: {e}")
|
||||
return None
|
||||
|
||||
def _get_table_classifier(self):
|
||||
"""
|
||||
Get or create table classification model (lazy loading).
|
||||
|
||||
Returns:
|
||||
Table classifier model instance or None if loading fails
|
||||
"""
|
||||
if not settings.enable_table_cell_boxes_extraction:
|
||||
return None
|
||||
|
||||
try:
|
||||
from paddlex import create_model
|
||||
|
||||
if self._table_cls_model is None:
|
||||
model_name = settings.table_classification_model_name or "PP-LCNet_x1_0_table_cls"
|
||||
logger.info(f"Loading table classification model: {model_name}")
|
||||
self._table_cls_model = create_model(model_name)
|
||||
return self._table_cls_model
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to load table classifier: {e}")
|
||||
return None
|
||||
|
||||
def _extract_cell_boxes_with_slanet(
|
||||
self,
|
||||
table_image: np.ndarray,
|
||||
table_bbox: List[float],
|
||||
is_wired: Optional[bool] = None
|
||||
) -> Optional[List[List[float]]]:
|
||||
"""
|
||||
Extract cell bounding boxes using direct SLANeXt model call.
|
||||
|
||||
This supplements PPStructureV3 which doesn't expose cell boxes in its output.
|
||||
|
||||
Args:
|
||||
table_image: Cropped table image as numpy array (BGR format)
|
||||
table_bbox: Table bounding box in page coordinates [x1, y1, x2, y2]
|
||||
is_wired: If None, auto-detect using classifier. True for bordered tables.
|
||||
|
||||
Returns:
|
||||
List of cell bounding boxes in page coordinates [[x1,y1,x2,y2], ...],
|
||||
or None if extraction fails
|
||||
"""
|
||||
if not settings.enable_table_cell_boxes_extraction:
|
||||
return None
|
||||
|
||||
try:
|
||||
# Auto-detect table type if not specified
|
||||
if is_wired is None:
|
||||
classifier = self._get_table_classifier()
|
||||
if classifier:
|
||||
try:
|
||||
cls_result = classifier.predict(table_image)
|
||||
# PP-LCNet returns classification result
|
||||
for res in cls_result:
|
||||
label_names = res.get('label_names', [])
|
||||
if label_names:
|
||||
is_wired = 'wired' in str(label_names[0]).lower()
|
||||
logger.debug(f"Table classified as: {'wired' if is_wired else 'wireless'}")
|
||||
break
|
||||
except Exception as e:
|
||||
logger.warning(f"Table classification failed, defaulting to wired: {e}")
|
||||
is_wired = True
|
||||
else:
|
||||
is_wired = True # Default to wired if classifier unavailable
|
||||
|
||||
# Get appropriate SLANeXt model
|
||||
model = self._get_slanet_model(is_wired=is_wired)
|
||||
if model is None:
|
||||
return None
|
||||
|
||||
# Run SLANeXt prediction
|
||||
results = model.predict(table_image)
|
||||
|
||||
# Extract cell boxes from result
|
||||
cell_boxes = []
|
||||
table_x, table_y = table_bbox[0], table_bbox[1]
|
||||
|
||||
for result in results:
|
||||
# SLANeXt returns 'bbox' with 8-point polygon format
|
||||
# [[x1,y1,x2,y2,x3,y3,x4,y4], ...]
|
||||
boxes = result.get('bbox', [])
|
||||
for box in boxes:
|
||||
if isinstance(box, (list, tuple)):
|
||||
if len(box) >= 8:
|
||||
# 8-point polygon: convert to 4-point rectangle
|
||||
xs = [box[i] for i in range(0, 8, 2)]
|
||||
ys = [box[i] for i in range(1, 8, 2)]
|
||||
x1, y1 = min(xs), min(ys)
|
||||
x2, y2 = max(xs), max(ys)
|
||||
elif len(box) >= 4:
|
||||
# Already 4-point rectangle
|
||||
x1, y1, x2, y2 = box[:4]
|
||||
else:
|
||||
continue
|
||||
|
||||
# Convert to absolute page coordinates
|
||||
abs_box = [
|
||||
float(x1 + table_x),
|
||||
float(y1 + table_y),
|
||||
float(x2 + table_x),
|
||||
float(y2 + table_y)
|
||||
]
|
||||
cell_boxes.append(abs_box)
|
||||
|
||||
logger.info(f"SLANeXt extracted {len(cell_boxes)} cell boxes (is_wired={is_wired})")
|
||||
return cell_boxes if cell_boxes else None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Cell boxes extraction with SLANeXt failed: {e}")
|
||||
return None
|
||||
|
||||
def release_slanet_models(self):
|
||||
"""Release SLANeXt models to free GPU memory."""
|
||||
if self._slanet_wired_model is not None:
|
||||
del self._slanet_wired_model
|
||||
self._slanet_wired_model = None
|
||||
logger.info("Released SLANeXt wired model")
|
||||
|
||||
if self._slanet_wireless_model is not None:
|
||||
del self._slanet_wireless_model
|
||||
self._slanet_wireless_model = None
|
||||
logger.info("Released SLANeXt wireless model")
|
||||
|
||||
if self._table_cls_model is not None:
|
||||
del self._table_cls_model
|
||||
self._table_cls_model = None
|
||||
logger.info("Released table classifier model")
|
||||
|
||||
gc.collect()
|
||||
if TORCH_AVAILABLE:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def analyze_with_full_structure(
|
||||
self,
|
||||
image_path: Path,
|
||||
output_dir: Optional[Path] = None,
|
||||
current_page: int = 0,
|
||||
preprocessed_image: Optional[Image.Image] = None,
|
||||
scaling_info: Optional['ScalingInfo'] = None
|
||||
scaling_info: Optional['ScalingInfo'] = None,
|
||||
save_visualization: bool = False,
|
||||
use_cv_table_detection: bool = False
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Analyze document with full PP-StructureV3 capabilities.
|
||||
@@ -271,6 +106,10 @@ class PPStructureEnhanced:
|
||||
scaling_info: Optional ScalingInfo from preprocessing. If image was scaled
|
||||
for layout detection, all bbox coordinates will be scaled back
|
||||
to original image coordinates for proper cropping.
|
||||
save_visualization: If True, save detection visualization images
|
||||
(layout_det_res, layout_order_res, overall_ocr_res, etc.)
|
||||
use_cv_table_detection: If True, use CV-based line detection for wired tables
|
||||
instead of ML-based cell detection (RT-DETR-L)
|
||||
|
||||
Returns:
|
||||
Dictionary with complete structure information including:
|
||||
@@ -278,6 +117,7 @@ class PPStructureEnhanced:
|
||||
- reading_order: Reading order indices
|
||||
- images: Extracted images with metadata
|
||||
- tables: Extracted tables with structure
|
||||
- visualization_dir: Path to visualization images (if save_visualization=True)
|
||||
"""
|
||||
try:
|
||||
logger.info(f"Enhanced PP-StructureV3 analysis on {image_path.name}")
|
||||
@@ -313,9 +153,21 @@ class PPStructureEnhanced:
|
||||
all_elements = []
|
||||
all_images = []
|
||||
all_tables = []
|
||||
visualization_dir = None
|
||||
|
||||
# Process each page result
|
||||
for page_idx, page_result in enumerate(results):
|
||||
# Save visualization images if requested
|
||||
if save_visualization and output_dir and hasattr(page_result, 'save_to_img'):
|
||||
try:
|
||||
vis_dir = output_dir / 'visualization'
|
||||
vis_dir.mkdir(parents=True, exist_ok=True)
|
||||
page_result.save_to_img(str(vis_dir))
|
||||
visualization_dir = vis_dir
|
||||
logger.info(f"Saved visualization images to {vis_dir}")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to save visualization images: {e}")
|
||||
|
||||
# Try to access parsing_res_list and table_res_list (the complete structure)
|
||||
parsing_res_list = None
|
||||
table_res_list = None
|
||||
@@ -369,6 +221,7 @@ class PPStructureEnhanced:
|
||||
logger.info(f"Found parsing_res_list in to_dict['res'] with {len(parsing_res_list)} elements")
|
||||
|
||||
# Extract table_res_list which contains cell_box_list
|
||||
layout_det_res = None
|
||||
if result_dict:
|
||||
if 'table_res_list' in result_dict:
|
||||
table_res_list = result_dict['table_res_list']
|
||||
@@ -377,20 +230,40 @@ class PPStructureEnhanced:
|
||||
if 'cell_box_list' in tbl:
|
||||
logger.info(f" Table {i}: {len(tbl['cell_box_list'])} cell boxes")
|
||||
|
||||
# Extract layout_det_res for Image-in-Table processing
|
||||
if 'layout_det_res' in result_dict:
|
||||
layout_det_res = result_dict['layout_det_res']
|
||||
logger.info(f"Found layout_det_res with {len(layout_det_res.get('boxes', []))} boxes")
|
||||
|
||||
# Process parsing_res_list if found
|
||||
if parsing_res_list:
|
||||
elements = self._process_parsing_res_list(
|
||||
parsing_res_list, current_page, output_dir, image_path, scaling_info,
|
||||
table_res_list=table_res_list # Pass table_res_list for cell_box_list
|
||||
table_res_list=table_res_list, # Pass table_res_list for cell_box_list
|
||||
layout_det_res=layout_det_res, # Pass layout_det_res for Image-in-Table
|
||||
use_cv_table_detection=use_cv_table_detection # Use CV for wired tables
|
||||
)
|
||||
all_elements.extend(elements)
|
||||
|
||||
# Extract tables and images from elements
|
||||
table_bboxes = [] # Collect table bboxes for standalone image filtering
|
||||
for elem in elements:
|
||||
if elem['type'] == ElementType.TABLE:
|
||||
all_tables.append(elem)
|
||||
table_bboxes.append(elem.get('bbox', [0, 0, 0, 0]))
|
||||
elif elem['type'] in [ElementType.IMAGE, ElementType.FIGURE]:
|
||||
all_images.append(elem)
|
||||
|
||||
# Extract standalone images from layout_det_res (images NOT inside tables)
|
||||
if layout_det_res and image_path and output_dir:
|
||||
standalone_images = self._extract_standalone_images(
|
||||
layout_det_res, table_bboxes, image_path, output_dir,
|
||||
current_page, len(elements), scaling_info
|
||||
)
|
||||
if standalone_images:
|
||||
all_elements.extend(standalone_images)
|
||||
all_images.extend(standalone_images)
|
||||
logger.info(f"Extracted {len(standalone_images)} standalone images from layout_det_res")
|
||||
else:
|
||||
# Fallback to markdown if parsing_res_list not available
|
||||
logger.warning("parsing_res_list not found, falling back to markdown")
|
||||
@@ -402,7 +275,7 @@ class PPStructureEnhanced:
|
||||
# Create reading order based on element positions
|
||||
reading_order = self._determine_reading_order(all_elements)
|
||||
|
||||
return {
|
||||
result = {
|
||||
'elements': all_elements,
|
||||
'total_elements': len(all_elements),
|
||||
'reading_order': reading_order,
|
||||
@@ -412,6 +285,12 @@ class PPStructureEnhanced:
|
||||
'has_parsing_res_list': parsing_res_list is not None
|
||||
}
|
||||
|
||||
# Add visualization directory if available
|
||||
if visualization_dir:
|
||||
result['visualization_dir'] = str(visualization_dir)
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Enhanced PP-StructureV3 analysis error: {e}")
|
||||
import traceback
|
||||
@@ -446,7 +325,9 @@ class PPStructureEnhanced:
|
||||
output_dir: Optional[Path],
|
||||
source_image_path: Optional[Path] = None,
|
||||
scaling_info: Optional['ScalingInfo'] = None,
|
||||
table_res_list: Optional[List[Dict]] = None
|
||||
table_res_list: Optional[List[Dict]] = None,
|
||||
layout_det_res: Optional[Dict] = None,
|
||||
use_cv_table_detection: bool = False
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Process parsing_res_list to extract all elements.
|
||||
@@ -458,6 +339,8 @@ class PPStructureEnhanced:
|
||||
output_dir: Optional output directory
|
||||
source_image_path: Path to source image for cropping image regions
|
||||
table_res_list: Optional list of table results containing cell_box_list
|
||||
layout_det_res: Optional layout detection result for Image-in-Table processing
|
||||
use_cv_table_detection: If True, use CV line detection for wired tables
|
||||
|
||||
Returns:
|
||||
List of processed elements with normalized structure
|
||||
@@ -628,53 +511,55 @@ class PPStructureEnhanced:
|
||||
logger.info(f"[TABLE] Processed {len(processed_cells)} cell boxes with table offset ({table_x}, {table_y})")
|
||||
cell_boxes_extracted = True
|
||||
|
||||
# Supplement with direct SLANeXt call if PPStructureV3 didn't provide boxes
|
||||
if not cell_boxes_extracted and source_image_path and bbox != [0, 0, 0, 0]:
|
||||
logger.info(f"[TABLE] No boxes from PPStructureV3, attempting SLANeXt extraction...")
|
||||
try:
|
||||
# Load source image and crop table region
|
||||
source_img = Image.open(source_image_path)
|
||||
source_array = np.array(source_img)
|
||||
|
||||
# Crop table region (bbox is in original image coordinates)
|
||||
x1, y1, x2, y2 = [int(round(c)) for c in bbox]
|
||||
# Ensure coordinates are within image bounds
|
||||
h, w = source_array.shape[:2]
|
||||
x1, y1 = max(0, x1), max(0, y1)
|
||||
x2, y2 = min(w, x2), min(h, y2)
|
||||
|
||||
if x2 > x1 and y2 > y1:
|
||||
table_crop = source_array[y1:y2, x1:x2]
|
||||
|
||||
# Convert RGB to BGR for SLANeXt
|
||||
if len(table_crop.shape) == 3 and table_crop.shape[2] == 3:
|
||||
table_crop_bgr = table_crop[:, :, ::-1]
|
||||
else:
|
||||
table_crop_bgr = table_crop
|
||||
|
||||
# Extract cell boxes using SLANeXt
|
||||
slanet_boxes = self._extract_cell_boxes_with_slanet(
|
||||
table_crop_bgr,
|
||||
bbox, # Pass original bbox for coordinate offset
|
||||
is_wired=None # Auto-detect
|
||||
)
|
||||
|
||||
if slanet_boxes:
|
||||
element['cell_boxes'] = slanet_boxes
|
||||
element['cell_boxes_source'] = 'slanet'
|
||||
cell_boxes_extracted = True
|
||||
logger.info(f"[TABLE] SLANeXt extracted {len(slanet_boxes)} cell boxes")
|
||||
else:
|
||||
logger.warning(f"[TABLE] Invalid crop region: ({x1},{y1})-({x2},{y2})")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[TABLE] SLANeXt extraction failed: {e}")
|
||||
|
||||
if not cell_boxes_extracted:
|
||||
logger.info(f"[TABLE] No cell boxes available. PPStructureV3 keys: {list(res_data.keys()) if res_data else 'empty'}")
|
||||
|
||||
# Special handling for images/figures
|
||||
elif mapped_type in [ElementType.IMAGE, ElementType.FIGURE]:
|
||||
# 2.5 CV-based table line detection for wired tables
|
||||
if use_cv_table_detection and source_image_path and source_image_path.exists():
|
||||
try:
|
||||
# Load image for CV processing
|
||||
cv_image = cv2.imread(str(source_image_path))
|
||||
if cv_image is not None:
|
||||
cv_detector = CVTableDetector()
|
||||
ml_cell_boxes = element.get('cell_boxes', [])
|
||||
|
||||
# Detect cells using CV line detection
|
||||
cv_cells = cv_detector.detect_and_merge_with_ml(
|
||||
cv_image,
|
||||
bbox, # Table bbox
|
||||
ml_cell_boxes
|
||||
)
|
||||
|
||||
if cv_cells:
|
||||
# Apply scaling if needed
|
||||
if scaling_info and scaling_info.was_scaled:
|
||||
cv_cells = [
|
||||
[
|
||||
c[0] * scaling_info.scale_x,
|
||||
c[1] * scaling_info.scale_y,
|
||||
c[2] * scaling_info.scale_x,
|
||||
c[3] * scaling_info.scale_y
|
||||
]
|
||||
for c in cv_cells
|
||||
]
|
||||
|
||||
element['cell_boxes'] = cv_cells
|
||||
element['cell_boxes_source'] = 'cv_line_detection'
|
||||
logger.info(f"[TABLE] CV line detection found {len(cv_cells)} cells (ML had {len(ml_cell_boxes)})")
|
||||
except Exception as cv_error:
|
||||
logger.warning(f"[TABLE] CV line detection failed: {cv_error}")
|
||||
|
||||
# 3. Image-in-Table 處理:檢測並嵌入表格內的圖片
|
||||
if layout_det_res and source_image_path and output_dir:
|
||||
embedded_images = self._embed_images_in_table(
|
||||
element, bbox, layout_det_res, source_image_path, output_dir
|
||||
)
|
||||
if embedded_images:
|
||||
element['embedded_images'] = embedded_images
|
||||
logger.info(f"[TABLE] Embedded {len(embedded_images)} images into table")
|
||||
|
||||
# Special handling for images/figures/stamps (visual elements that need cropping)
|
||||
elif mapped_type in [ElementType.IMAGE, ElementType.FIGURE, ElementType.STAMP, ElementType.LOGO]:
|
||||
# Save image if path provided
|
||||
if 'img_path' in item and output_dir:
|
||||
saved_path = self._save_image(item['img_path'], output_dir, element['element_id'])
|
||||
@@ -704,6 +589,209 @@ class PPStructureEnhanced:
|
||||
|
||||
return elements
|
||||
|
||||
def _embed_images_in_table(
|
||||
self,
|
||||
table_element: Dict[str, Any],
|
||||
table_bbox: List[float],
|
||||
layout_det_res: Dict,
|
||||
source_image_path: Path,
|
||||
output_dir: Path
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Detect and embed images that are inside a table region.
|
||||
|
||||
This handles the case where layout detection finds an image inside a table,
|
||||
similar to how pp_demo embeds images in table HTML.
|
||||
|
||||
Args:
|
||||
table_element: The table element being processed
|
||||
table_bbox: Table bounding box [x1, y1, x2, y2]
|
||||
layout_det_res: Layout detection result containing all detected boxes
|
||||
source_image_path: Path to source image for cropping
|
||||
output_dir: Output directory for saving cropped images
|
||||
|
||||
Returns:
|
||||
List of embedded image info dicts with 'bbox', 'saved_path', 'html_tag'
|
||||
"""
|
||||
embedded_images = []
|
||||
|
||||
try:
|
||||
boxes = layout_det_res.get('boxes', [])
|
||||
table_x1, table_y1, table_x2, table_y2 = table_bbox
|
||||
|
||||
for box in boxes:
|
||||
label = box.get('label', '').lower()
|
||||
if label != 'image':
|
||||
continue
|
||||
|
||||
# Get image bbox
|
||||
img_coord = box.get('coordinate', [])
|
||||
if len(img_coord) < 4:
|
||||
continue
|
||||
|
||||
img_x1, img_y1, img_x2, img_y2 = img_coord[:4]
|
||||
|
||||
# Check if image is inside table (with some tolerance)
|
||||
tolerance = 5 # pixels
|
||||
if (img_x1 >= table_x1 - tolerance and
|
||||
img_y1 >= table_y1 - tolerance and
|
||||
img_x2 <= table_x2 + tolerance and
|
||||
img_y2 <= table_y2 + tolerance):
|
||||
|
||||
logger.info(f"[IMAGE-IN-TABLE] Found image at [{int(img_x1)},{int(img_y1)},{int(img_x2)},{int(img_y2)}] inside table")
|
||||
|
||||
# Crop and save the image
|
||||
img_element_id = f"img_in_table_{int(img_x1)}_{int(img_y1)}_{int(img_x2)}_{int(img_y2)}"
|
||||
cropped_path = self._crop_and_save_image(
|
||||
source_image_path,
|
||||
[img_x1, img_y1, img_x2, img_y2],
|
||||
output_dir,
|
||||
img_element_id
|
||||
)
|
||||
|
||||
if cropped_path:
|
||||
# Create relative path for HTML embedding
|
||||
rel_path = f"imgs/{Path(cropped_path).name}"
|
||||
|
||||
# Create img tag similar to pp_demo
|
||||
img_html = f'<div style="text-align: center;"><img src="{rel_path}" alt="Image" /></div>'
|
||||
|
||||
embedded_image = {
|
||||
'bbox': [img_x1, img_y1, img_x2, img_y2],
|
||||
'saved_path': str(cropped_path),
|
||||
'relative_path': rel_path,
|
||||
'html_tag': img_html,
|
||||
'element_id': img_element_id
|
||||
}
|
||||
embedded_images.append(embedded_image)
|
||||
|
||||
# Try to insert image into HTML content
|
||||
if 'html' in table_element and table_element['html']:
|
||||
# Insert image reference at the end of HTML before </table>
|
||||
original_html = table_element['html']
|
||||
if '</tbody>' in original_html:
|
||||
# Insert before </tbody> in a new row
|
||||
new_html = original_html.replace(
|
||||
'</tbody>',
|
||||
f'<tr><td colspan="99" style="text-align:center;"><img src="{rel_path}" alt="Embedded Image" /></td></tr></tbody>'
|
||||
)
|
||||
table_element['html'] = new_html
|
||||
logger.info(f"[IMAGE-IN-TABLE] Embedded image into table HTML")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[IMAGE-IN-TABLE] Error processing images in table: {e}")
|
||||
|
||||
return embedded_images
|
||||
|
||||
def _extract_standalone_images(
|
||||
self,
|
||||
layout_det_res: Dict,
|
||||
table_bboxes: List[List[float]],
|
||||
source_image_path: Path,
|
||||
output_dir: Path,
|
||||
current_page: int,
|
||||
start_index: int,
|
||||
scaling_info: Optional['ScalingInfo'] = None
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Extract standalone images from layout_det_res that are NOT inside tables.
|
||||
|
||||
This handles images that PP-StructureV3 detects in layout_det_res but
|
||||
doesn't include in parsing_res_list (non-table images).
|
||||
|
||||
Args:
|
||||
layout_det_res: Layout detection result containing all detected boxes
|
||||
table_bboxes: List of table bounding boxes to exclude images inside tables
|
||||
source_image_path: Path to source image for cropping
|
||||
output_dir: Output directory for saving cropped images
|
||||
current_page: Current page number
|
||||
start_index: Starting index for element IDs
|
||||
scaling_info: Optional scaling info for coordinate restoration
|
||||
|
||||
Returns:
|
||||
List of standalone image elements
|
||||
"""
|
||||
standalone_images = []
|
||||
|
||||
try:
|
||||
boxes = layout_det_res.get('boxes', [])
|
||||
logger.info(f"[STANDALONE-IMAGE] Checking {len(boxes)} boxes for standalone images")
|
||||
|
||||
for box_idx, box in enumerate(boxes):
|
||||
label = box.get('label', '').lower()
|
||||
if label != 'image':
|
||||
continue
|
||||
|
||||
# Get image bbox
|
||||
img_coord = box.get('coordinate', [])
|
||||
if len(img_coord) < 4:
|
||||
continue
|
||||
|
||||
img_x1, img_y1, img_x2, img_y2 = img_coord[:4]
|
||||
|
||||
# Check if image is inside any table (skip if so)
|
||||
is_inside_table = False
|
||||
for table_bbox in table_bboxes:
|
||||
if len(table_bbox) < 4:
|
||||
continue
|
||||
tx1, ty1, tx2, ty2 = table_bbox[:4]
|
||||
tolerance = 5 # pixels
|
||||
if (img_x1 >= tx1 - tolerance and
|
||||
img_y1 >= ty1 - tolerance and
|
||||
img_x2 <= tx2 + tolerance and
|
||||
img_y2 <= ty2 + tolerance):
|
||||
is_inside_table = True
|
||||
logger.debug(f"[STANDALONE-IMAGE] Image at [{int(img_x1)},{int(img_y1)}] is inside table, skipping")
|
||||
break
|
||||
|
||||
if is_inside_table:
|
||||
continue
|
||||
|
||||
# Scale bbox back to original coordinates if needed
|
||||
if scaling_info and scaling_info.was_scaled:
|
||||
scale_factor = scaling_info.scale_factor
|
||||
img_x1 *= scale_factor
|
||||
img_y1 *= scale_factor
|
||||
img_x2 *= scale_factor
|
||||
img_y2 *= scale_factor
|
||||
logger.debug(f"[STANDALONE-IMAGE] Scaled bbox by {scale_factor:.3f}")
|
||||
|
||||
logger.info(f"[STANDALONE-IMAGE] Found standalone image at [{int(img_x1)},{int(img_y1)},{int(img_x2)},{int(img_y2)}]")
|
||||
|
||||
# Crop and save the image
|
||||
element_idx = start_index + len(standalone_images)
|
||||
img_element_id = f"standalone_img_{current_page}_{element_idx}"
|
||||
cropped_path = self._crop_and_save_image(
|
||||
source_image_path,
|
||||
[img_x1, img_y1, img_x2, img_y2],
|
||||
output_dir,
|
||||
img_element_id
|
||||
)
|
||||
|
||||
if cropped_path:
|
||||
element = {
|
||||
'element_id': img_element_id,
|
||||
'type': ElementType.IMAGE,
|
||||
'original_type': 'image',
|
||||
'content': '',
|
||||
'page': current_page,
|
||||
'bbox': [img_x1, img_y1, img_x2, img_y2],
|
||||
'index': element_idx,
|
||||
'confidence': box.get('score', 1.0),
|
||||
'saved_path': cropped_path,
|
||||
'img_path': cropped_path,
|
||||
'source': 'layout_det_res'
|
||||
}
|
||||
standalone_images.append(element)
|
||||
logger.info(f"[STANDALONE-IMAGE] Extracted and saved: {cropped_path}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[STANDALONE-IMAGE] Error extracting standalone images: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
return standalone_images
|
||||
|
||||
def _process_markdown_fallback(
|
||||
self,
|
||||
page_result: Any,
|
||||
|
||||
135
backend/tests/test_layered_rendering.py
Normal file
135
backend/tests/test_layered_rendering.py
Normal file
@@ -0,0 +1,135 @@
|
||||
"""
|
||||
Test script for layered rendering approach.
|
||||
Tests that table borders are drawn from cell_boxes
|
||||
while text is rendered at raw OCR positions.
|
||||
"""
|
||||
import sys
|
||||
sys.path.insert(0, '/home/egg/project/Tool_OCR/backend')
|
||||
|
||||
import json
|
||||
from pathlib import Path
|
||||
from app.services.pdf_generator_service import PDFGeneratorService
|
||||
from app.services.gap_filling_service import GapFillingService
|
||||
|
||||
|
||||
def test_layered_rendering():
|
||||
"""Test the layered rendering approach."""
|
||||
# Use existing test task
|
||||
task_id = "84899366-f361-44f1-b989-5aba72419ca5"
|
||||
result_dir = Path(f"/home/egg/project/Tool_OCR/backend/storage/results/{task_id}")
|
||||
|
||||
if not result_dir.exists():
|
||||
print(f"[ERROR] Result directory not found: {result_dir}")
|
||||
return False
|
||||
|
||||
# Load scan_result.json
|
||||
scan_result_path = result_dir / "scan_result.json"
|
||||
raw_ocr_path = result_dir / f"{task_id}_scan_page_1_raw_ocr_regions.json"
|
||||
|
||||
if not scan_result_path.exists():
|
||||
print(f"[ERROR] scan_result.json not found")
|
||||
return False
|
||||
|
||||
print(f"[INFO] Loading scan_result.json from {scan_result_path}")
|
||||
with open(scan_result_path, 'r', encoding='utf-8') as f:
|
||||
scan_result = json.load(f)
|
||||
|
||||
# Parse as UnifiedDocument using PDFGeneratorService's method
|
||||
# scan_result IS the unified document (not nested under 'unified_document')
|
||||
pdf_service = PDFGeneratorService()
|
||||
unified_doc = pdf_service._json_to_unified_document(scan_result, result_dir)
|
||||
|
||||
if not unified_doc:
|
||||
print(f"[ERROR] Failed to parse UnifiedDocument")
|
||||
return False
|
||||
|
||||
print(f"[INFO] UnifiedDocument: {unified_doc.page_count} pages")
|
||||
|
||||
# Count elements
|
||||
table_count = 0
|
||||
text_count = 0
|
||||
for page in unified_doc.pages:
|
||||
for elem in page.elements:
|
||||
if elem.type.value == 'table':
|
||||
table_count += 1
|
||||
# Check if cell_boxes are present (in metadata, not content)
|
||||
cell_boxes = elem.metadata.get('cell_boxes', []) if elem.metadata else []
|
||||
embedded_images = elem.metadata.get('embedded_images', []) if elem.metadata else []
|
||||
print(f"[INFO] Table {elem.element_id}: {len(cell_boxes)} cell_boxes, {len(embedded_images)} embedded_images")
|
||||
elif elem.type.value in ['text', 'paragraph', 'title']:
|
||||
text_count += 1
|
||||
|
||||
print(f"[INFO] Tables: {table_count}, Text elements: {text_count}")
|
||||
|
||||
# Load raw OCR regions if available
|
||||
raw_ocr_regions = []
|
||||
if raw_ocr_path.exists():
|
||||
print(f"[INFO] Loading raw OCR regions from {raw_ocr_path}")
|
||||
with open(raw_ocr_path, 'r', encoding='utf-8') as f:
|
||||
raw_ocr_data = json.load(f)
|
||||
# Could be a list or dict with 'text_regions' key
|
||||
if isinstance(raw_ocr_data, list):
|
||||
raw_ocr_regions = raw_ocr_data
|
||||
else:
|
||||
raw_ocr_regions = raw_ocr_data.get('text_regions', [])
|
||||
print(f"[INFO] Raw OCR regions: {len(raw_ocr_regions)}")
|
||||
|
||||
# Apply gap filling for each page
|
||||
print(f"[INFO] Applying GapFillingService...")
|
||||
gap_service = GapFillingService()
|
||||
gap_filled_doc = unified_doc # Start with original
|
||||
|
||||
for page in unified_doc.pages:
|
||||
page_num = page.page_number
|
||||
page_dims = page.dimensions
|
||||
|
||||
# Get elements for this page
|
||||
pp_elements = page.elements
|
||||
|
||||
# Apply gap filling
|
||||
filled_elements, stats = gap_service.fill_gaps(
|
||||
raw_ocr_regions=raw_ocr_regions,
|
||||
pp_structure_elements=pp_elements,
|
||||
page_number=page_num,
|
||||
pp_dimensions=page_dims
|
||||
)
|
||||
|
||||
# Update the page's elements
|
||||
page.elements = filled_elements
|
||||
print(f"[INFO] Page {page_num}: Added {stats.get('gaps_filled', 0)} gap-filled regions")
|
||||
|
||||
# Count elements after gap filling
|
||||
final_text_count = 0
|
||||
for page in gap_filled_doc.pages:
|
||||
for elem in page.elements:
|
||||
if elem.type.value in ['text', 'paragraph', 'title']:
|
||||
final_text_count += 1
|
||||
|
||||
print(f"[INFO] After gap filling: {final_text_count} text elements (was {text_count})")
|
||||
|
||||
# Generate PDF
|
||||
print(f"[INFO] Generating PDF with layered rendering...")
|
||||
output_pdf = result_dir / "test_layered_rendering.pdf"
|
||||
|
||||
try:
|
||||
success = pdf_service.generate_from_unified_document(
|
||||
unified_doc=gap_filled_doc,
|
||||
output_path=output_pdf
|
||||
)
|
||||
if success:
|
||||
print(f"[SUCCESS] PDF generated: {output_pdf}")
|
||||
print(f"[INFO] PDF size: {output_pdf.stat().st_size} bytes")
|
||||
return True
|
||||
else:
|
||||
print(f"[ERROR] PDF generation returned False")
|
||||
return False
|
||||
except Exception as e:
|
||||
print(f"[ERROR] PDF generation failed: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
success = test_layered_rendering()
|
||||
sys.exit(0 if success else 1)
|
||||
Reference in New Issue
Block a user