chore: backup before code cleanup
Backup commit before executing remove-unused-code proposal. This includes all pending changes and new features. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
583
backend/app/services/cell_validation_engine.py
Normal file
583
backend/app/services/cell_validation_engine.py
Normal file
@@ -0,0 +1,583 @@
|
||||
"""
|
||||
Cell Validation Engine
|
||||
|
||||
Validates PP-StructureV3 table detections using metric-based heuristics
|
||||
to filter over-detected cells and reclassify invalid tables as TEXT elements.
|
||||
|
||||
Metrics used:
|
||||
- Cell density: cells per 10,000 px² (normal: 0.4-1.0, over-detected: 6+)
|
||||
- Average cell area: px² per cell (normal: 10,000-25,000, over-detected: ~1,600)
|
||||
- Cell height: table_height / cell_count (minimum: 10px for readable text)
|
||||
"""
|
||||
|
||||
import logging
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Dict, Any, Optional, Tuple
|
||||
from html.parser import HTMLParser
|
||||
import re
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class CellValidationConfig:
|
||||
"""Configuration for cell validation thresholds."""
|
||||
max_cell_density: float = 3.0 # cells per 10,000 px²
|
||||
min_avg_cell_area: float = 3000.0 # px² per cell
|
||||
min_cell_height: float = 10.0 # px per cell row
|
||||
enabled: bool = True
|
||||
|
||||
|
||||
@dataclass
|
||||
class TableValidationResult:
|
||||
"""Result of table validation."""
|
||||
is_valid: bool
|
||||
table_element: Dict[str, Any]
|
||||
reason: Optional[str] = None
|
||||
metrics: Optional[Dict[str, float]] = None
|
||||
|
||||
|
||||
class CellValidationEngine:
|
||||
"""
|
||||
Validates table elements from PP-StructureV3 output.
|
||||
|
||||
Over-detected tables are identified by abnormal metrics and
|
||||
reclassified as TEXT elements while preserving content.
|
||||
"""
|
||||
|
||||
def __init__(self, config: Optional[CellValidationConfig] = None):
|
||||
self.config = config or CellValidationConfig()
|
||||
|
||||
def calculate_table_metrics(
|
||||
self,
|
||||
bbox: List[float],
|
||||
cell_boxes: List[List[float]]
|
||||
) -> Dict[str, float]:
|
||||
"""
|
||||
Calculate validation metrics for a table.
|
||||
|
||||
Args:
|
||||
bbox: Table bounding box [x0, y0, x1, y1]
|
||||
cell_boxes: List of cell bounding boxes
|
||||
|
||||
Returns:
|
||||
Dictionary with calculated metrics
|
||||
"""
|
||||
if len(bbox) < 4:
|
||||
return {"cell_count": 0, "cell_density": 0, "avg_cell_area": 0, "avg_cell_height": 0}
|
||||
|
||||
cell_count = len(cell_boxes)
|
||||
if cell_count == 0:
|
||||
return {"cell_count": 0, "cell_density": 0, "avg_cell_area": 0, "avg_cell_height": 0}
|
||||
|
||||
# Calculate table dimensions
|
||||
table_width = bbox[2] - bbox[0]
|
||||
table_height = bbox[3] - bbox[1]
|
||||
table_area = table_width * table_height
|
||||
|
||||
if table_area <= 0:
|
||||
return {"cell_count": cell_count, "cell_density": 0, "avg_cell_area": 0, "avg_cell_height": 0}
|
||||
|
||||
# Cell density: cells per 10,000 px²
|
||||
cell_density = (cell_count / table_area) * 10000
|
||||
|
||||
# Average cell area
|
||||
avg_cell_area = table_area / cell_count
|
||||
|
||||
# Average cell height (table height / cell count)
|
||||
avg_cell_height = table_height / cell_count
|
||||
|
||||
return {
|
||||
"cell_count": cell_count,
|
||||
"table_width": table_width,
|
||||
"table_height": table_height,
|
||||
"table_area": table_area,
|
||||
"cell_density": cell_density,
|
||||
"avg_cell_area": avg_cell_area,
|
||||
"avg_cell_height": avg_cell_height
|
||||
}
|
||||
|
||||
def validate_table(
|
||||
self,
|
||||
element: Dict[str, Any]
|
||||
) -> TableValidationResult:
|
||||
"""
|
||||
Validate a single table element.
|
||||
|
||||
Args:
|
||||
element: Table element from PP-StructureV3 output
|
||||
|
||||
Returns:
|
||||
TableValidationResult with validation status and metrics
|
||||
"""
|
||||
if not self.config.enabled:
|
||||
return TableValidationResult(is_valid=True, table_element=element)
|
||||
|
||||
# Extract bbox and cell_boxes
|
||||
bbox = element.get("bbox", [])
|
||||
cell_boxes = element.get("cell_boxes", [])
|
||||
|
||||
# Tables without cells pass validation (structure-only tables)
|
||||
if not cell_boxes:
|
||||
return TableValidationResult(
|
||||
is_valid=True,
|
||||
table_element=element,
|
||||
reason="No cells to validate"
|
||||
)
|
||||
|
||||
# Calculate metrics
|
||||
metrics = self.calculate_table_metrics(bbox, cell_boxes)
|
||||
|
||||
# Check cell density
|
||||
if metrics["cell_density"] > self.config.max_cell_density:
|
||||
return TableValidationResult(
|
||||
is_valid=False,
|
||||
table_element=element,
|
||||
reason=f"Cell density {metrics['cell_density']:.2f} exceeds threshold {self.config.max_cell_density}",
|
||||
metrics=metrics
|
||||
)
|
||||
|
||||
# Check average cell area
|
||||
if metrics["avg_cell_area"] < self.config.min_avg_cell_area:
|
||||
return TableValidationResult(
|
||||
is_valid=False,
|
||||
table_element=element,
|
||||
reason=f"Avg cell area {metrics['avg_cell_area']:.0f}px² below threshold {self.config.min_avg_cell_area}px²",
|
||||
metrics=metrics
|
||||
)
|
||||
|
||||
# Check cell height
|
||||
if metrics["avg_cell_height"] < self.config.min_cell_height:
|
||||
return TableValidationResult(
|
||||
is_valid=False,
|
||||
table_element=element,
|
||||
reason=f"Avg cell height {metrics['avg_cell_height']:.1f}px below threshold {self.config.min_cell_height}px",
|
||||
metrics=metrics
|
||||
)
|
||||
|
||||
# Content-based validation: check if content looks like prose vs tabular data
|
||||
content_check = self._validate_table_content(element)
|
||||
if not content_check["is_tabular"]:
|
||||
return TableValidationResult(
|
||||
is_valid=False,
|
||||
table_element=element,
|
||||
reason=content_check["reason"],
|
||||
metrics=metrics
|
||||
)
|
||||
|
||||
return TableValidationResult(
|
||||
is_valid=True,
|
||||
table_element=element,
|
||||
metrics=metrics
|
||||
)
|
||||
|
||||
def _validate_table_content(self, element: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Validate table content to detect false positive tables.
|
||||
|
||||
Checks:
|
||||
1. Sparsity: text coverage ratio (text area / table area)
|
||||
2. Header: does table have proper header structure
|
||||
3. Key-Value: for 2-col tables, is it a key-value list or random layout
|
||||
4. Prose: are cells containing long prose text
|
||||
|
||||
Returns:
|
||||
Dict with is_tabular (bool) and reason (str)
|
||||
"""
|
||||
html_content = element.get("content", "")
|
||||
bbox = element.get("bbox", [])
|
||||
cell_boxes = element.get("cell_boxes", [])
|
||||
|
||||
if not html_content or '<table' not in html_content.lower():
|
||||
return {"is_tabular": True, "reason": "no_html_content"}
|
||||
|
||||
try:
|
||||
from bs4 import BeautifulSoup
|
||||
soup = BeautifulSoup(html_content, 'html.parser')
|
||||
table = soup.find('table')
|
||||
if not table:
|
||||
return {"is_tabular": True, "reason": "no_table_element"}
|
||||
|
||||
rows = table.find_all('tr')
|
||||
if not rows:
|
||||
return {"is_tabular": True, "reason": "no_rows"}
|
||||
|
||||
# Extract cell contents with row structure
|
||||
row_data = []
|
||||
all_cells = []
|
||||
for row_idx, row in enumerate(rows):
|
||||
cells = row.find_all(['td', 'th'])
|
||||
row_cells = []
|
||||
for cell in cells:
|
||||
text = cell.get_text(strip=True)
|
||||
colspan = int(cell.get('colspan', 1))
|
||||
is_header = cell.name == 'th'
|
||||
cell_info = {
|
||||
"text": text,
|
||||
"length": len(text),
|
||||
"colspan": colspan,
|
||||
"is_header": is_header,
|
||||
"row": row_idx
|
||||
}
|
||||
row_cells.append(cell_info)
|
||||
all_cells.append(cell_info)
|
||||
row_data.append(row_cells)
|
||||
|
||||
if not all_cells:
|
||||
return {"is_tabular": True, "reason": "no_cells"}
|
||||
|
||||
num_rows = len(row_data)
|
||||
num_cols = max(len(r) for r in row_data) if row_data else 0
|
||||
|
||||
# === Check 1: Sparsity (text coverage) ===
|
||||
sparsity_result = self._check_sparsity(bbox, cell_boxes, all_cells)
|
||||
if not sparsity_result["is_valid"]:
|
||||
return {"is_tabular": False, "reason": sparsity_result["reason"]}
|
||||
|
||||
# === Check 2: Header structure ===
|
||||
header_result = self._check_header_structure(row_data, num_cols)
|
||||
if not header_result["has_header"] and num_rows > 3:
|
||||
# Large table without header is suspicious
|
||||
logger.debug(f"Table has no header structure with {num_rows} rows")
|
||||
|
||||
# === Check 3: Key-Value pattern for 2-column tables ===
|
||||
if num_cols == 2:
|
||||
kv_result = self._check_key_value_pattern(row_data)
|
||||
if kv_result["is_kv_list"] and kv_result["confidence"] > 0.7:
|
||||
# High confidence key-value list - keep as table but log
|
||||
logger.debug(f"Table identified as key-value list (conf={kv_result['confidence']:.2f})")
|
||||
elif not kv_result["is_kv_list"] and kv_result["is_random_layout"]:
|
||||
# Random 2-column layout, not a real table
|
||||
return {
|
||||
"is_tabular": False,
|
||||
"reason": f"random_two_column_layout (not key-value)"
|
||||
}
|
||||
|
||||
# === Check 4: Prose content ===
|
||||
long_cells = [c for c in all_cells if c["length"] > 80]
|
||||
prose_ratio = len(long_cells) / len(all_cells) if all_cells else 0
|
||||
if prose_ratio > 0.3:
|
||||
return {
|
||||
"is_tabular": False,
|
||||
"reason": f"prose_content ({len(long_cells)}/{len(all_cells)} cells > 80 chars)"
|
||||
}
|
||||
|
||||
# === Check 5: Section header as table ===
|
||||
if num_rows <= 2 and num_cols <= 2:
|
||||
first_row = row_data[0] if row_data else []
|
||||
if len(first_row) == 1:
|
||||
text = first_row[0]["text"]
|
||||
if text.isupper() and len(text) < 50:
|
||||
return {
|
||||
"is_tabular": False,
|
||||
"reason": f"section_header_only ({text[:30]})"
|
||||
}
|
||||
|
||||
return {"is_tabular": True, "reason": "content_valid"}
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Content validation failed: {e}")
|
||||
return {"is_tabular": True, "reason": f"validation_error: {e}"}
|
||||
|
||||
def _check_sparsity(
|
||||
self,
|
||||
bbox: List[float],
|
||||
cell_boxes: List[List[float]],
|
||||
all_cells: List[Dict]
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Check text coverage ratio (sparsity).
|
||||
|
||||
Two-column layouts have large empty gaps in the middle.
|
||||
Real tables have more uniform cell distribution.
|
||||
"""
|
||||
if len(bbox) < 4:
|
||||
return {"is_valid": True, "reason": "no_bbox"}
|
||||
|
||||
table_width = bbox[2] - bbox[0]
|
||||
table_height = bbox[3] - bbox[1]
|
||||
table_area = table_width * table_height
|
||||
|
||||
if table_area <= 0:
|
||||
return {"is_valid": True, "reason": "invalid_area"}
|
||||
|
||||
# Calculate text area from cell_boxes
|
||||
if cell_boxes:
|
||||
text_area = 0
|
||||
for cb in cell_boxes:
|
||||
if len(cb) >= 4:
|
||||
w = abs(cb[2] - cb[0])
|
||||
h = abs(cb[3] - cb[1])
|
||||
text_area += w * h
|
||||
coverage = text_area / table_area
|
||||
else:
|
||||
# Estimate from cell content length
|
||||
total_chars = sum(c["length"] for c in all_cells)
|
||||
# Rough estimate: 1 char ≈ 8x12 pixels = 96 px²
|
||||
estimated_text_area = total_chars * 96
|
||||
coverage = min(estimated_text_area / table_area, 1.0)
|
||||
|
||||
# Very sparse table (< 15% coverage) is suspicious
|
||||
if coverage < 0.15:
|
||||
return {
|
||||
"is_valid": False,
|
||||
"reason": f"sparse_content (coverage={coverage:.1%})"
|
||||
}
|
||||
|
||||
return {"is_valid": True, "coverage": coverage}
|
||||
|
||||
def _check_header_structure(
|
||||
self,
|
||||
row_data: List[List[Dict]],
|
||||
num_cols: int
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Check if table has proper header structure.
|
||||
|
||||
Real tables usually have:
|
||||
- First row with <th> elements
|
||||
- Or first row with different content pattern (labels vs values)
|
||||
"""
|
||||
if not row_data:
|
||||
return {"has_header": False}
|
||||
|
||||
first_row = row_data[0]
|
||||
|
||||
# Check for <th> elements
|
||||
th_count = sum(1 for c in first_row if c.get("is_header", False))
|
||||
if th_count > 0 and th_count >= len(first_row) * 0.5:
|
||||
return {"has_header": True, "type": "th_elements"}
|
||||
|
||||
# Check for header-like content (short, distinct from body)
|
||||
if len(row_data) > 1:
|
||||
first_row_avg_len = sum(c["length"] for c in first_row) / len(first_row) if first_row else 0
|
||||
body_rows = row_data[1:]
|
||||
body_cells = [c for row in body_rows for c in row]
|
||||
body_avg_len = sum(c["length"] for c in body_cells) / len(body_cells) if body_cells else 0
|
||||
|
||||
# Header row should be shorter (labels) than body (data)
|
||||
if first_row_avg_len < body_avg_len * 0.7:
|
||||
return {"has_header": True, "type": "short_labels"}
|
||||
|
||||
return {"has_header": False}
|
||||
|
||||
def _check_key_value_pattern(
|
||||
self,
|
||||
row_data: List[List[Dict]]
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
For 2-column tables, check if it's a key-value list.
|
||||
|
||||
Key-value characteristics:
|
||||
- Left column: short labels (< 30 chars)
|
||||
- Right column: values (can be longer)
|
||||
- Consistent pattern across rows
|
||||
|
||||
Random layout characteristics:
|
||||
- Both columns have similar length distribution
|
||||
- No clear label-value relationship
|
||||
"""
|
||||
if not row_data:
|
||||
return {"is_kv_list": False, "is_random_layout": False, "confidence": 0}
|
||||
|
||||
left_lengths = []
|
||||
right_lengths = []
|
||||
kv_rows = 0
|
||||
total_rows = 0
|
||||
|
||||
for row in row_data:
|
||||
if len(row) != 2:
|
||||
continue
|
||||
total_rows += 1
|
||||
left = row[0]
|
||||
right = row[1]
|
||||
left_lengths.append(left["length"])
|
||||
right_lengths.append(right["length"])
|
||||
|
||||
# Key-value pattern: left is short label, right is value
|
||||
if left["length"] < 40 and left["length"] < right["length"] * 2:
|
||||
kv_rows += 1
|
||||
|
||||
if total_rows == 0:
|
||||
return {"is_kv_list": False, "is_random_layout": False, "confidence": 0}
|
||||
|
||||
kv_ratio = kv_rows / total_rows
|
||||
avg_left = sum(left_lengths) / len(left_lengths) if left_lengths else 0
|
||||
avg_right = sum(right_lengths) / len(right_lengths) if right_lengths else 0
|
||||
|
||||
# High KV ratio and left column is shorter = key-value list
|
||||
if kv_ratio > 0.6 and avg_left < avg_right:
|
||||
return {
|
||||
"is_kv_list": True,
|
||||
"is_random_layout": False,
|
||||
"confidence": kv_ratio,
|
||||
"avg_left": avg_left,
|
||||
"avg_right": avg_right
|
||||
}
|
||||
|
||||
# Similar lengths on both sides = random layout
|
||||
if avg_left > 0 and 0.5 < avg_right / avg_left < 2.0:
|
||||
# Both columns have similar content length
|
||||
return {
|
||||
"is_kv_list": False,
|
||||
"is_random_layout": True,
|
||||
"confidence": 1 - kv_ratio,
|
||||
"avg_left": avg_left,
|
||||
"avg_right": avg_right
|
||||
}
|
||||
|
||||
return {
|
||||
"is_kv_list": False,
|
||||
"is_random_layout": False,
|
||||
"confidence": 0,
|
||||
"avg_left": avg_left,
|
||||
"avg_right": avg_right
|
||||
}
|
||||
|
||||
def extract_text_from_table_html(self, html_content: str) -> str:
|
||||
"""
|
||||
Extract plain text from table HTML content.
|
||||
|
||||
Args:
|
||||
html_content: HTML string containing table structure
|
||||
|
||||
Returns:
|
||||
Plain text extracted from table cells
|
||||
"""
|
||||
if not html_content:
|
||||
return ""
|
||||
|
||||
try:
|
||||
class TableTextExtractor(HTMLParser):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.text_parts = []
|
||||
self.in_cell = False
|
||||
|
||||
def handle_starttag(self, tag, attrs):
|
||||
if tag in ('td', 'th'):
|
||||
self.in_cell = True
|
||||
|
||||
def handle_endtag(self, tag):
|
||||
if tag in ('td', 'th'):
|
||||
self.in_cell = False
|
||||
|
||||
def handle_data(self, data):
|
||||
if self.in_cell:
|
||||
stripped = data.strip()
|
||||
if stripped:
|
||||
self.text_parts.append(stripped)
|
||||
|
||||
parser = TableTextExtractor()
|
||||
parser.feed(html_content)
|
||||
return ' '.join(parser.text_parts)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to parse table HTML: {e}")
|
||||
# Fallback: strip HTML tags with regex
|
||||
text = re.sub(r'<[^>]+>', ' ', html_content)
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
return text
|
||||
|
||||
def reclassify_as_text(self, element: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Convert an over-detected table element to a TEXT element.
|
||||
|
||||
Args:
|
||||
element: Table element to reclassify
|
||||
|
||||
Returns:
|
||||
New TEXT element with preserved content
|
||||
"""
|
||||
# Extract text content from HTML
|
||||
html_content = element.get("content", "")
|
||||
text_content = self.extract_text_from_table_html(html_content)
|
||||
|
||||
# Create new TEXT element
|
||||
text_element = {
|
||||
"element_id": element.get("element_id", ""),
|
||||
"type": "text",
|
||||
"original_type": "table_reclassified", # Mark as reclassified
|
||||
"content": text_content,
|
||||
"page": element.get("page", 0),
|
||||
"bbox": element.get("bbox", []),
|
||||
"index": element.get("index", 0),
|
||||
"confidence": element.get("confidence", 1.0),
|
||||
"reclassified_from": "table",
|
||||
"reclassification_reason": "over_detection"
|
||||
}
|
||||
|
||||
return text_element
|
||||
|
||||
def validate_and_filter_elements(
|
||||
self,
|
||||
elements: List[Dict[str, Any]]
|
||||
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
||||
"""
|
||||
Validate all elements and filter/reclassify over-detected tables.
|
||||
|
||||
Args:
|
||||
elements: List of elements from PP-StructureV3 output
|
||||
|
||||
Returns:
|
||||
Tuple of (filtered_elements, statistics)
|
||||
"""
|
||||
filtered_elements = []
|
||||
stats = {
|
||||
"total_tables": 0,
|
||||
"valid_tables": 0,
|
||||
"reclassified_tables": 0,
|
||||
"reclassification_details": []
|
||||
}
|
||||
|
||||
for element in elements:
|
||||
if element.get("type") != "table":
|
||||
# Non-table elements pass through unchanged
|
||||
filtered_elements.append(element)
|
||||
continue
|
||||
|
||||
stats["total_tables"] += 1
|
||||
|
||||
# Validate table
|
||||
result = self.validate_table(element)
|
||||
|
||||
if result.is_valid:
|
||||
stats["valid_tables"] += 1
|
||||
filtered_elements.append(element)
|
||||
else:
|
||||
# Reclassify as TEXT
|
||||
stats["reclassified_tables"] += 1
|
||||
text_element = self.reclassify_as_text(element)
|
||||
filtered_elements.append(text_element)
|
||||
|
||||
stats["reclassification_details"].append({
|
||||
"element_id": element.get("element_id"),
|
||||
"reason": result.reason,
|
||||
"metrics": result.metrics
|
||||
})
|
||||
|
||||
logger.info(
|
||||
f"Reclassified table {element.get('element_id')} as TEXT: {result.reason}"
|
||||
)
|
||||
|
||||
# Re-sort by reading order (y0 then x0)
|
||||
filtered_elements = self._sort_by_reading_order(filtered_elements)
|
||||
|
||||
return filtered_elements, stats
|
||||
|
||||
def _sort_by_reading_order(
|
||||
self,
|
||||
elements: List[Dict[str, Any]]
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""Sort elements by reading order (top-to-bottom, left-to-right)."""
|
||||
def sort_key(elem):
|
||||
bbox = elem.get("bbox", [0, 0, 0, 0])
|
||||
if isinstance(bbox, dict):
|
||||
y0 = bbox.get("y0", 0)
|
||||
x0 = bbox.get("x0", 0)
|
||||
elif isinstance(bbox, list) and len(bbox) >= 2:
|
||||
x0, y0 = bbox[0], bbox[1]
|
||||
else:
|
||||
y0, x0 = 0, 0
|
||||
return (y0, x0)
|
||||
|
||||
return sorted(elements, key=sort_key)
|
||||
@@ -83,12 +83,34 @@ class TextRegion:
|
||||
return ((x0 + x1) / 2, (y0 + y1) / 2)
|
||||
|
||||
|
||||
# Element type to IoA threshold mapping
|
||||
# TABLE needs strict filtering (low threshold) to prevent duplicate content
|
||||
# FIGURE allows more text through (high threshold) to preserve axis labels, legends
|
||||
# TEXT/TITLE uses moderate threshold to tolerate boundary detection errors
|
||||
ELEMENT_TYPE_IOA_THRESHOLDS = {
|
||||
ElementType.TABLE: 'table',
|
||||
ElementType.FIGURE: 'figure',
|
||||
ElementType.IMAGE: 'figure',
|
||||
ElementType.CHART: 'figure',
|
||||
ElementType.DIAGRAM: 'figure',
|
||||
}
|
||||
|
||||
|
||||
class GapFillingService:
|
||||
"""
|
||||
Service for detecting and filling gaps in PP-StructureV3 output.
|
||||
|
||||
This service uses IoA (Intersection over Area) algorithm for coverage detection,
|
||||
which correctly measures "small box contained in large box" relationship.
|
||||
|
||||
Key improvements over IoU:
|
||||
- IoA = intersection_area / ocr_box_area (non-symmetric)
|
||||
- Better for detecting if OCR text is covered by larger layout regions
|
||||
- Different thresholds per element type (TEXT, TABLE, FIGURE)
|
||||
- Optional boundary shrinking to reduce edge duplicates
|
||||
|
||||
This service:
|
||||
1. Calculates coverage of PP-StructureV3 elements over raw OCR regions
|
||||
1. Calculates coverage of PP-StructureV3 elements over raw OCR regions using IoA
|
||||
2. Identifies uncovered raw OCR regions
|
||||
3. Supplements uncovered regions as TEXT elements
|
||||
4. Deduplicates against existing PP-StructureV3 TEXT elements
|
||||
@@ -98,9 +120,12 @@ class GapFillingService:
|
||||
def __init__(
|
||||
self,
|
||||
coverage_threshold: float = None,
|
||||
iou_threshold: float = None,
|
||||
confidence_threshold: float = None,
|
||||
dedup_iou_threshold: float = None,
|
||||
ioa_threshold_text: float = None,
|
||||
ioa_threshold_table: float = None,
|
||||
ioa_threshold_figure: float = None,
|
||||
dedup_ioa_threshold: float = None,
|
||||
shrink_pixels: int = None,
|
||||
enabled: bool = None
|
||||
):
|
||||
"""
|
||||
@@ -108,27 +133,48 @@ class GapFillingService:
|
||||
|
||||
Args:
|
||||
coverage_threshold: Coverage ratio below which gap filling activates (default: 0.7)
|
||||
iou_threshold: IoU threshold for coverage detection (default: 0.15)
|
||||
confidence_threshold: Minimum confidence for raw OCR regions (default: 0.3)
|
||||
dedup_iou_threshold: IoU threshold for deduplication (default: 0.5)
|
||||
ioa_threshold_text: IoA threshold for TEXT/TITLE elements (default: 0.6)
|
||||
ioa_threshold_table: IoA threshold for TABLE elements (default: 0.1)
|
||||
ioa_threshold_figure: IoA threshold for FIGURE/IMAGE elements (default: 0.8)
|
||||
dedup_ioa_threshold: IoA threshold for deduplication (default: 0.5)
|
||||
shrink_pixels: Shrink OCR bbox inward by this many pixels (default: 1)
|
||||
enabled: Whether gap filling is enabled (default: True)
|
||||
"""
|
||||
self.coverage_threshold = coverage_threshold if coverage_threshold is not None else getattr(
|
||||
settings, 'gap_filling_coverage_threshold', 0.7
|
||||
)
|
||||
self.iou_threshold = iou_threshold if iou_threshold is not None else getattr(
|
||||
settings, 'gap_filling_iou_threshold', 0.15
|
||||
)
|
||||
self.confidence_threshold = confidence_threshold if confidence_threshold is not None else getattr(
|
||||
settings, 'gap_filling_confidence_threshold', 0.3
|
||||
)
|
||||
self.dedup_iou_threshold = dedup_iou_threshold if dedup_iou_threshold is not None else getattr(
|
||||
settings, 'gap_filling_dedup_iou_threshold', 0.5
|
||||
|
||||
# IoA thresholds per element type
|
||||
self.ioa_threshold_text = ioa_threshold_text if ioa_threshold_text is not None else getattr(
|
||||
settings, 'gap_filling_ioa_threshold_text', 0.6
|
||||
)
|
||||
self.ioa_threshold_table = ioa_threshold_table if ioa_threshold_table is not None else getattr(
|
||||
settings, 'gap_filling_ioa_threshold_table', 0.1
|
||||
)
|
||||
self.ioa_threshold_figure = ioa_threshold_figure if ioa_threshold_figure is not None else getattr(
|
||||
settings, 'gap_filling_ioa_threshold_figure', 0.8
|
||||
)
|
||||
self.dedup_ioa_threshold = dedup_ioa_threshold if dedup_ioa_threshold is not None else getattr(
|
||||
settings, 'gap_filling_dedup_ioa_threshold', 0.5
|
||||
)
|
||||
|
||||
# Boundary shrinking
|
||||
self.shrink_pixels = shrink_pixels if shrink_pixels is not None else getattr(
|
||||
settings, 'gap_filling_shrink_pixels', 1
|
||||
)
|
||||
|
||||
self.enabled = enabled if enabled is not None else getattr(
|
||||
settings, 'gap_filling_enabled', True
|
||||
)
|
||||
|
||||
# Legacy compatibility
|
||||
self.iou_threshold = getattr(settings, 'gap_filling_iou_threshold', 0.15)
|
||||
self.dedup_iou_threshold = getattr(settings, 'gap_filling_dedup_iou_threshold', 0.5)
|
||||
|
||||
def should_activate(
|
||||
self,
|
||||
raw_ocr_regions: List[TextRegion],
|
||||
@@ -209,21 +255,83 @@ class GapFillingService:
|
||||
logger.debug(f"Found {len(uncovered)} uncovered regions out of {len(raw_ocr_regions)}")
|
||||
return uncovered
|
||||
|
||||
def _get_ioa_threshold_for_element(self, element_type: ElementType) -> float:
|
||||
"""
|
||||
Get the IoA threshold for a specific element type.
|
||||
|
||||
Different element types have different thresholds:
|
||||
- TABLE: 0.1 (strict, prevents duplicate table content)
|
||||
- FIGURE/IMAGE: 0.8 (preserves text inside figures)
|
||||
- TEXT/others: 0.6 (tolerates boundary errors)
|
||||
|
||||
Args:
|
||||
element_type: The element type to get threshold for
|
||||
|
||||
Returns:
|
||||
IoA threshold value
|
||||
"""
|
||||
threshold_type = ELEMENT_TYPE_IOA_THRESHOLDS.get(element_type, 'text')
|
||||
if threshold_type == 'table':
|
||||
return self.ioa_threshold_table
|
||||
elif threshold_type == 'figure':
|
||||
return self.ioa_threshold_figure
|
||||
else:
|
||||
return self.ioa_threshold_text
|
||||
|
||||
def _shrink_bbox(
|
||||
self,
|
||||
bbox: Tuple[float, float, float, float],
|
||||
pixels: int
|
||||
) -> Tuple[float, float, float, float]:
|
||||
"""
|
||||
Shrink a bounding box inward by the specified number of pixels.
|
||||
|
||||
This reduces false "uncovered" detection at region boundaries.
|
||||
|
||||
Args:
|
||||
bbox: Original bbox (x0, y0, x1, y1)
|
||||
pixels: Number of pixels to shrink on each side
|
||||
|
||||
Returns:
|
||||
Shrunk bbox (x0, y0, x1, y1)
|
||||
"""
|
||||
x0, y0, x1, y1 = bbox
|
||||
# Ensure we don't shrink to negative width/height
|
||||
width = x1 - x0
|
||||
height = y1 - y0
|
||||
max_shrink = min(width / 2, height / 2, pixels)
|
||||
|
||||
return (
|
||||
x0 + max_shrink,
|
||||
y0 + max_shrink,
|
||||
x1 - max_shrink,
|
||||
y1 - max_shrink
|
||||
)
|
||||
|
||||
def _is_region_covered(
|
||||
self,
|
||||
region: TextRegion,
|
||||
pp_structure_elements: List[DocumentElement],
|
||||
skip_table_coverage: bool = True
|
||||
skip_table_coverage: bool = False
|
||||
) -> bool:
|
||||
"""
|
||||
Check if a raw OCR region is covered by any PP-StructureV3 element.
|
||||
|
||||
Uses IoA (Intersection over Area) instead of IoU for better coverage detection.
|
||||
IoA = intersection_area / ocr_box_area
|
||||
This correctly measures "OCR box is contained in layout region".
|
||||
|
||||
Different element types use different IoA thresholds:
|
||||
- TABLE: 0.1 (strict, any overlap means covered)
|
||||
- FIGURE/IMAGE: 0.8 (preserve text inside figures like axis labels)
|
||||
- TEXT/others: 0.6 (tolerate boundary errors)
|
||||
|
||||
Args:
|
||||
region: Raw OCR text region
|
||||
pp_structure_elements: List of PP-StructureV3 elements
|
||||
skip_table_coverage: If True, don't consider TABLE elements as covering
|
||||
(allows raw OCR text inside tables to pass through
|
||||
for layered rendering)
|
||||
skip_table_coverage: If True, don't consider TABLE elements as covering.
|
||||
Default is False - TABLE elements DO cover regions
|
||||
to prevent duplicate rendering of table cell content.
|
||||
|
||||
Returns:
|
||||
True if the region is covered
|
||||
@@ -231,10 +339,13 @@ class GapFillingService:
|
||||
center_x, center_y = region.center
|
||||
region_bbox = region.normalized_bbox
|
||||
|
||||
# Apply boundary shrinking to reduce edge duplicates
|
||||
if self.shrink_pixels > 0:
|
||||
region_bbox = self._shrink_bbox(region_bbox, self.shrink_pixels)
|
||||
|
||||
for element in pp_structure_elements:
|
||||
# Skip TABLE elements when checking coverage
|
||||
# This allows raw OCR text inside tables to be preserved
|
||||
# PDF generator will render: table borders + raw text positions
|
||||
# Check TABLE elements for coverage (default behavior)
|
||||
# This prevents gap_fill from adding duplicate text inside table areas
|
||||
if skip_table_coverage and element.type == ElementType.TABLE:
|
||||
continue
|
||||
|
||||
@@ -247,9 +358,11 @@ class GapFillingService:
|
||||
if self._point_in_bbox(center_x, center_y, elem_bbox):
|
||||
return True
|
||||
|
||||
# Check 2: IoU exceeds threshold
|
||||
iou = self._calculate_iou(region_bbox, elem_bbox)
|
||||
if iou > self.iou_threshold:
|
||||
# Check 2: IoA exceeds element-type-specific threshold
|
||||
# IoA = intersection_area / ocr_box_area
|
||||
ioa = self._calculate_ioa(region_bbox, elem_bbox)
|
||||
threshold = self._get_ioa_threshold_for_element(element.type)
|
||||
if ioa > threshold:
|
||||
return True
|
||||
|
||||
return False
|
||||
@@ -262,6 +375,9 @@ class GapFillingService:
|
||||
"""
|
||||
Remove regions that highly overlap with existing PP-StructureV3 TEXT elements.
|
||||
|
||||
Uses IoA (Intersection over Area) for deduplication to correctly detect
|
||||
when an OCR region is already covered by an existing TEXT element.
|
||||
|
||||
Args:
|
||||
uncovered_regions: List of uncovered raw OCR regions
|
||||
pp_structure_elements: List of PP-StructureV3 elements
|
||||
@@ -278,6 +394,11 @@ class GapFillingService:
|
||||
deduplicated = []
|
||||
for region in uncovered_regions:
|
||||
region_bbox = region.normalized_bbox
|
||||
|
||||
# Apply boundary shrinking for deduplication as well
|
||||
if self.shrink_pixels > 0:
|
||||
region_bbox = self._shrink_bbox(region_bbox, self.shrink_pixels)
|
||||
|
||||
is_duplicate = False
|
||||
|
||||
for element in text_elements:
|
||||
@@ -286,10 +407,11 @@ class GapFillingService:
|
||||
element.bbox.x1, element.bbox.y1
|
||||
)
|
||||
|
||||
iou = self._calculate_iou(region_bbox, elem_bbox)
|
||||
if iou > self.dedup_iou_threshold:
|
||||
# Use IoA for deduplication
|
||||
ioa = self._calculate_ioa(region_bbox, elem_bbox)
|
||||
if ioa > self.dedup_ioa_threshold:
|
||||
logger.debug(
|
||||
f"Skipping duplicate region (IoU={iou:.2f}): '{region.text[:30]}...'"
|
||||
f"Skipping duplicate region (IoA={ioa:.2f}): '{region.text[:30]}...'"
|
||||
)
|
||||
is_duplicate = True
|
||||
break
|
||||
@@ -622,6 +744,52 @@ class GapFillingService:
|
||||
x0, y0, x1, y1 = bbox
|
||||
return x0 <= x <= x1 and y0 <= y <= y1
|
||||
|
||||
@staticmethod
|
||||
def _calculate_ioa(
|
||||
ocr_bbox: Tuple[float, float, float, float],
|
||||
layout_bbox: Tuple[float, float, float, float]
|
||||
) -> float:
|
||||
"""
|
||||
Calculate Intersection over Area (IoA) of OCR bbox relative to layout bbox.
|
||||
|
||||
IoA = intersection_area / ocr_box_area
|
||||
|
||||
This is the recommended algorithm for detecting if an OCR text region
|
||||
is contained within a larger layout region. Unlike IoU which is symmetric,
|
||||
IoA correctly measures "how much of the OCR box is inside the layout region".
|
||||
|
||||
Example:
|
||||
- OCR box: 100x20 pixels (small text line)
|
||||
- Layout box: 500x800 pixels (large paragraph region)
|
||||
- IoU would be very small (~0.005) even if OCR is fully inside layout
|
||||
- IoA would be 1.0 if OCR is fully inside layout, which is correct
|
||||
|
||||
Args:
|
||||
ocr_bbox: OCR text region bbox (x0, y0, x1, y1) - typically smaller
|
||||
layout_bbox: Layout element bbox (x0, y0, x1, y1) - typically larger
|
||||
|
||||
Returns:
|
||||
IoA value between 0 and 1
|
||||
"""
|
||||
# Calculate intersection
|
||||
x0 = max(ocr_bbox[0], layout_bbox[0])
|
||||
y0 = max(ocr_bbox[1], layout_bbox[1])
|
||||
x1 = min(ocr_bbox[2], layout_bbox[2])
|
||||
y1 = min(ocr_bbox[3], layout_bbox[3])
|
||||
|
||||
if x1 <= x0 or y1 <= y0:
|
||||
return 0.0
|
||||
|
||||
intersection = (x1 - x0) * (y1 - y0)
|
||||
|
||||
# Calculate OCR box area (denominator for IoA)
|
||||
ocr_area = (ocr_bbox[2] - ocr_bbox[0]) * (ocr_bbox[3] - ocr_bbox[1])
|
||||
|
||||
if ocr_area <= 0:
|
||||
return 0.0
|
||||
|
||||
return intersection / ocr_area
|
||||
|
||||
@staticmethod
|
||||
def _calculate_iou(
|
||||
bbox1: Tuple[float, float, float, float],
|
||||
@@ -630,6 +798,9 @@ class GapFillingService:
|
||||
"""
|
||||
Calculate Intersection over Union (IoU) of two bboxes.
|
||||
|
||||
Note: This method is kept for backward compatibility.
|
||||
For coverage detection, use _calculate_ioa() instead.
|
||||
|
||||
Args:
|
||||
bbox1: First bbox (x0, y0, x1, y1)
|
||||
bbox2: Second bbox (x0, y0, x1, y1)
|
||||
|
||||
@@ -6,7 +6,7 @@ Supports both PaddleOCR (for scanned documents) and direct extraction (for edita
|
||||
import json
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
from datetime import datetime
|
||||
import uuid
|
||||
import gc # For garbage collection
|
||||
@@ -446,6 +446,47 @@ class OCRService:
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clear GPU cache: {e}")
|
||||
|
||||
def _apply_ocr_config(self, ocr_config: 'OCRConfig'):
|
||||
"""
|
||||
Apply OCR configuration from preset or custom settings.
|
||||
This modifies the runtime settings used by PP-Structure.
|
||||
|
||||
Args:
|
||||
ocr_config: OCRConfig object with processing settings
|
||||
"""
|
||||
logger.info(f"Applying OCR config: {ocr_config.model_dump()}")
|
||||
|
||||
# Store the config for use in PP-Structure initialization
|
||||
self._runtime_ocr_config = ocr_config
|
||||
|
||||
# Apply table parsing mode settings
|
||||
# These will be used when initializing PP-StructureV3
|
||||
settings.table_parsing_mode = ocr_config.table_parsing_mode.value if hasattr(ocr_config.table_parsing_mode, 'value') else ocr_config.table_parsing_mode
|
||||
|
||||
# Apply preprocessing settings
|
||||
settings.use_doc_orientation_classify = ocr_config.use_doc_orientation_classify
|
||||
settings.use_doc_unwarping = ocr_config.use_doc_unwarping
|
||||
settings.use_textline_orientation = ocr_config.use_textline_orientation
|
||||
|
||||
# Apply recognition module settings
|
||||
settings.enable_chart_recognition = ocr_config.enable_chart_recognition
|
||||
settings.enable_formula_recognition = ocr_config.enable_formula_recognition
|
||||
settings.enable_seal_recognition = ocr_config.enable_seal_recognition
|
||||
settings.enable_region_detection = ocr_config.enable_region_detection
|
||||
|
||||
# Apply layout threshold if specified
|
||||
if ocr_config.layout_threshold is not None:
|
||||
settings.layout_detection_threshold = ocr_config.layout_threshold
|
||||
if ocr_config.layout_nms_threshold is not None:
|
||||
settings.layout_nms_threshold = ocr_config.layout_nms_threshold
|
||||
|
||||
# Invalidate existing structure engine to force re-initialization with new settings
|
||||
if self.structure_engine is not None:
|
||||
logger.info("Invalidating PP-StructureV3 engine to apply new OCR config")
|
||||
self._unload_structure_engine()
|
||||
|
||||
logger.info(f"OCR config applied: table_parsing_mode={settings.table_parsing_mode}")
|
||||
|
||||
def get_ocr_engine(self, lang: str = 'ch') -> PaddleOCR:
|
||||
"""
|
||||
Get or create OCR engine for specified language with GPU support
|
||||
@@ -615,6 +656,39 @@ class OCRService:
|
||||
formula_model = settings.formula_recognition_model_name
|
||||
chart_model = settings.chart_recognition_model_name
|
||||
|
||||
# Apply table_parsing_mode settings
|
||||
# This is the KEY configuration to prevent "cell explosion" on datasheet-type documents
|
||||
table_parsing_mode = settings.table_parsing_mode
|
||||
logger.info(f"Table parsing mode: {table_parsing_mode}")
|
||||
|
||||
if table_parsing_mode == "disabled":
|
||||
# 方案A: 完全關閉 table recognition
|
||||
use_table = False
|
||||
wired_table_model = None
|
||||
wireless_table_model = None
|
||||
wired_cell_det_model = None
|
||||
wireless_cell_det_model = None
|
||||
logger.info("Table parsing DISABLED - no cell segmentation")
|
||||
|
||||
elif table_parsing_mode == "classification_only":
|
||||
# 方案C: 只做 table classification,不做 cell segmentation
|
||||
use_table = False # Don't parse table structure
|
||||
wired_table_model = None
|
||||
wireless_table_model = None
|
||||
wired_cell_det_model = None
|
||||
wireless_cell_det_model = None
|
||||
# Keep table_cls_model to identify table regions
|
||||
logger.info("Table parsing CLASSIFICATION_ONLY - regions identified but no cell parsing")
|
||||
|
||||
elif table_parsing_mode == "conservative":
|
||||
# 方案B: 保守模式 - 只禁用 wireless tables (aggressive)
|
||||
# 注意:不要修改 layout_threshold,它會影響所有元素偵測,不只是表格
|
||||
wireless_table_model = None
|
||||
wireless_cell_det_model = None
|
||||
logger.info(f"Table parsing CONSERVATIVE - wireless disabled (layout_threshold unchanged)")
|
||||
|
||||
# else: "full" mode - use all default settings (aggressive)
|
||||
|
||||
# Apply table detection config overrides for individual table types
|
||||
if table_detection_config:
|
||||
if not table_detection_config.enable_wired_table:
|
||||
@@ -1343,6 +1417,7 @@ class OCRService:
|
||||
|
||||
if detect_layout:
|
||||
# Pass current_page to analyze_layout for correct page numbering
|
||||
# Also pass text_regions for table content rebuilding
|
||||
layout_data, images_metadata = self.analyze_layout(
|
||||
image_path,
|
||||
output_dir=output_dir,
|
||||
@@ -1350,7 +1425,8 @@ class OCRService:
|
||||
layout_model=layout_model,
|
||||
preprocessing_mode=preprocessing_mode,
|
||||
preprocessing_config=preprocessing_config,
|
||||
table_detection_config=table_detection_config
|
||||
table_detection_config=table_detection_config,
|
||||
raw_ocr_regions=text_regions # For table content rebuilding
|
||||
)
|
||||
|
||||
# Generate Markdown
|
||||
@@ -1379,6 +1455,12 @@ class OCRService:
|
||||
|
||||
# If layout data is enhanced, add enhanced results for converter
|
||||
if layout_data and layout_data.get('enhanced'):
|
||||
# Debug: check if table elements have rebuild_stats
|
||||
for elem in layout_data.get('elements', []):
|
||||
if elem.get('type') == 'table':
|
||||
has_rebuild = 'rebuild_stats' in elem
|
||||
logger.info(f"[OCR_SERVICE] Table {elem.get('element_id')}: has rebuild_stats={has_rebuild}, keys={list(elem.keys())[:10]}")
|
||||
|
||||
result['enhanced_results'] = [{
|
||||
'elements': layout_data.get('elements', []),
|
||||
'reading_order': layout_data.get('reading_order', []),
|
||||
@@ -1509,7 +1591,8 @@ class OCRService:
|
||||
layout_model: Optional[str] = None,
|
||||
preprocessing_mode: Optional[PreprocessingModeEnum] = None,
|
||||
preprocessing_config: Optional[PreprocessingConfig] = None,
|
||||
table_detection_config: Optional[TableDetectionConfig] = None
|
||||
table_detection_config: Optional[TableDetectionConfig] = None,
|
||||
raw_ocr_regions: Optional[List[Dict[str, Any]]] = None
|
||||
) -> Tuple[Optional[Dict], List[Dict]]:
|
||||
"""
|
||||
Analyze document layout using PP-StructureV3 with enhanced element extraction
|
||||
@@ -1522,6 +1605,7 @@ class OCRService:
|
||||
preprocessing_mode: Preprocessing mode ('auto', 'manual', 'disabled')
|
||||
preprocessing_config: Manual preprocessing config (used when mode='manual')
|
||||
table_detection_config: Table detection config (wired/wireless/region options)
|
||||
raw_ocr_regions: Optional list of raw OCR text regions for table content rebuilding
|
||||
|
||||
Returns:
|
||||
Tuple of (layout_data, images_metadata)
|
||||
@@ -1607,7 +1691,8 @@ class OCRService:
|
||||
preprocessed_image=preprocessed_image,
|
||||
scaling_info=scaling_info,
|
||||
save_visualization=True, # Save layout detection visualization images
|
||||
use_cv_table_detection=use_cv_table_detection
|
||||
use_cv_table_detection=use_cv_table_detection,
|
||||
raw_ocr_regions=raw_ocr_regions # For table content rebuilding
|
||||
)
|
||||
|
||||
if result.get('has_parsing_res_list'):
|
||||
@@ -2225,7 +2310,8 @@ class OCRService:
|
||||
layout_model: Optional[str] = None,
|
||||
preprocessing_mode: Optional[PreprocessingModeEnum] = None,
|
||||
preprocessing_config: Optional[PreprocessingConfig] = None,
|
||||
table_detection_config: Optional[TableDetectionConfig] = None
|
||||
table_detection_config: Optional[TableDetectionConfig] = None,
|
||||
ocr_config: Optional['OCRConfig'] = None
|
||||
) -> Union[UnifiedDocument, Dict]:
|
||||
"""
|
||||
Main processing method with dual-track support.
|
||||
@@ -2242,11 +2328,16 @@ class OCRService:
|
||||
preprocessing_mode: Layout preprocessing mode ('auto', 'manual', 'disabled')
|
||||
preprocessing_config: Manual preprocessing config (used when mode='manual')
|
||||
table_detection_config: Table detection config (wired/wireless/region options)
|
||||
ocr_config: OCR processing config from preset or custom settings
|
||||
|
||||
Returns:
|
||||
UnifiedDocument if dual-track is enabled and use_dual_track=True,
|
||||
Dict with legacy format otherwise
|
||||
"""
|
||||
# Apply OCR config to settings if provided
|
||||
if ocr_config:
|
||||
self._apply_ocr_config(ocr_config)
|
||||
|
||||
# Use dual-track processing if:
|
||||
# 1. use_dual_track is True (auto-detection), OR
|
||||
# 2. force_track is specified (explicit track selection)
|
||||
|
||||
@@ -189,7 +189,7 @@ def validate_cell_boxes(
|
||||
Validate cell_boxes coordinates against page boundaries and table bbox.
|
||||
|
||||
PP-StructureV3 sometimes returns cell_boxes with coordinates that exceed
|
||||
page boundaries. This function validates and reports issues.
|
||||
page boundaries or table bbox. This function validates and clamps to valid boundaries.
|
||||
|
||||
Args:
|
||||
cell_boxes: List of cell bounding boxes [[x0, y0, x1, y1], ...]
|
||||
@@ -213,10 +213,22 @@ def validate_cell_boxes(
|
||||
clamped_boxes = []
|
||||
|
||||
# Page boundaries with tolerance
|
||||
min_x = -tolerance
|
||||
min_y = -tolerance
|
||||
max_x = page_width + tolerance
|
||||
max_y = page_height + tolerance
|
||||
page_min_x = -tolerance
|
||||
page_min_y = -tolerance
|
||||
page_max_x = page_width + tolerance
|
||||
page_max_y = page_height + tolerance
|
||||
|
||||
# Table boundaries with tolerance (prefer clamping to table bbox)
|
||||
table_min_x = table_bbox[0] - tolerance if len(table_bbox) >= 4 else page_min_x
|
||||
table_min_y = table_bbox[1] - tolerance if len(table_bbox) >= 4 else page_min_y
|
||||
table_max_x = table_bbox[2] + tolerance if len(table_bbox) >= 4 else page_max_x
|
||||
table_max_y = table_bbox[3] + tolerance if len(table_bbox) >= 4 else page_max_y
|
||||
|
||||
# For clamping, use the intersection of page and expanded table bbox
|
||||
clamp_min_x = max(0, table_bbox[0] - tolerance) if len(table_bbox) >= 4 else 0
|
||||
clamp_min_y = max(0, table_bbox[1] - tolerance) if len(table_bbox) >= 4 else 0
|
||||
clamp_max_x = min(page_width, table_bbox[2] + tolerance) if len(table_bbox) >= 4 else page_width
|
||||
clamp_max_y = min(page_height, table_bbox[3] + tolerance) if len(table_bbox) >= 4 else page_height
|
||||
|
||||
for idx, box in enumerate(cell_boxes):
|
||||
if not box or len(box) < 4:
|
||||
@@ -230,19 +242,38 @@ def validate_cell_boxes(
|
||||
cell_issues = []
|
||||
|
||||
# Check if coordinates exceed page boundaries
|
||||
if x0 < min_x:
|
||||
if x0 < page_min_x:
|
||||
cell_issues.append(f"x0={x0:.1f} < 0")
|
||||
is_valid = False
|
||||
if y0 < min_y:
|
||||
if y0 < page_min_y:
|
||||
cell_issues.append(f"y0={y0:.1f} < 0")
|
||||
is_valid = False
|
||||
if x1 > max_x:
|
||||
if x1 > page_max_x:
|
||||
cell_issues.append(f"x1={x1:.1f} > page_width={page_width:.1f}")
|
||||
is_valid = False
|
||||
if y1 > max_y:
|
||||
if y1 > page_max_y:
|
||||
cell_issues.append(f"y1={y1:.1f} > page_height={page_height:.1f}")
|
||||
is_valid = False
|
||||
|
||||
# Check if coordinates significantly exceed table bbox (more than 20% of table size)
|
||||
if len(table_bbox) >= 4:
|
||||
table_w = table_bbox[2] - table_bbox[0]
|
||||
table_h = table_bbox[3] - table_bbox[1]
|
||||
expand_tolerance = max(tolerance, table_h * 0.2) # 20% of table height
|
||||
|
||||
if y0 < table_bbox[1] - expand_tolerance:
|
||||
cell_issues.append(f"y0={y0:.1f} above table (table_y0={table_bbox[1]:.1f})")
|
||||
is_valid = False
|
||||
if y1 > table_bbox[3] + expand_tolerance:
|
||||
cell_issues.append(f"y1={y1:.1f} below table (table_y1={table_bbox[3]:.1f})")
|
||||
is_valid = False
|
||||
if x0 < table_bbox[0] - expand_tolerance:
|
||||
cell_issues.append(f"x0={x0:.1f} left of table (table_x0={table_bbox[0]:.1f})")
|
||||
is_valid = False
|
||||
if x1 > table_bbox[2] + expand_tolerance:
|
||||
cell_issues.append(f"x1={x1:.1f} right of table (table_x1={table_bbox[2]:.1f})")
|
||||
is_valid = False
|
||||
|
||||
# Check for inverted coordinates
|
||||
if x0 > x1:
|
||||
cell_issues.append(f"x0={x0:.1f} > x1={x1:.1f}")
|
||||
@@ -255,12 +286,12 @@ def validate_cell_boxes(
|
||||
invalid_count += 1
|
||||
issues.append(f"Cell {idx}: {', '.join(cell_issues)}")
|
||||
|
||||
# Clamp to valid boundaries
|
||||
# Clamp to valid boundaries (table bbox with some tolerance)
|
||||
clamped_box = [
|
||||
max(0, min(x0, page_width)),
|
||||
max(0, min(y0, page_height)),
|
||||
max(0, min(x1, page_width)),
|
||||
max(0, min(y1, page_height))
|
||||
max(clamp_min_x, min(x0, clamp_max_x)),
|
||||
max(clamp_min_y, min(y0, clamp_max_y)),
|
||||
max(clamp_min_x, min(x1, clamp_max_x)),
|
||||
max(clamp_min_y, min(y1, clamp_max_y))
|
||||
]
|
||||
|
||||
# Ensure proper ordering after clamping
|
||||
@@ -395,10 +426,15 @@ class OCRToUnifiedConverter:
|
||||
|
||||
Handles both enhanced PP-StructureV3 results (with parsing_res_list)
|
||||
and traditional markdown results. Applies gap filling when enabled.
|
||||
|
||||
Gap filling can use either:
|
||||
1. overall_ocr_res from PP-StructureV3 (preferred, no extra inference)
|
||||
2. Separate raw OCR text_regions (fallback)
|
||||
"""
|
||||
pages = []
|
||||
|
||||
# Extract raw OCR text regions for gap filling
|
||||
# Prefer overall_ocr_res from PP-StructureV3 when available
|
||||
raw_text_regions = ocr_results.get('text_regions', [])
|
||||
ocr_dimensions = ocr_results.get('ocr_dimensions', {})
|
||||
|
||||
@@ -461,13 +497,22 @@ class OCRToUnifiedConverter:
|
||||
if element:
|
||||
elements.append(element)
|
||||
|
||||
# Apply gap filling if enabled and raw regions available
|
||||
if self.gap_filling_service and raw_text_regions:
|
||||
# Filter raw regions for current page
|
||||
page_raw_regions = [
|
||||
r for r in raw_text_regions
|
||||
if r.get('page', 0) == page_idx or r.get('page', 1) == page_idx + 1
|
||||
]
|
||||
# Apply gap filling if enabled
|
||||
# Priority: 1) overall_ocr_res from page_result, 2) raw_text_regions from separate OCR
|
||||
if self.gap_filling_service:
|
||||
# Check for overall_ocr_res from PP-StructureV3 (preferred, no extra inference)
|
||||
page_raw_regions = page_result.get('overall_ocr_res', [])
|
||||
|
||||
if page_raw_regions:
|
||||
logger.debug(f"Page {page_idx + 1}: Using overall_ocr_res ({len(page_raw_regions)} regions)")
|
||||
elif raw_text_regions:
|
||||
# Fallback to separate raw OCR regions
|
||||
page_raw_regions = [
|
||||
r for r in raw_text_regions
|
||||
if r.get('page', 0) == page_idx or r.get('page', 1) == page_idx + 1
|
||||
]
|
||||
if page_raw_regions:
|
||||
logger.debug(f"Page {page_idx + 1}: Using separate raw OCR ({len(page_raw_regions)} regions)")
|
||||
|
||||
if page_raw_regions:
|
||||
supplemented, stats = self.gap_filling_service.fill_gaps(
|
||||
@@ -711,8 +756,33 @@ class OCRToUnifiedConverter:
|
||||
# Prepare content based on element type
|
||||
if element_type == ElementType.TABLE:
|
||||
# For tables, use TableData as content
|
||||
# Pass cell_boxes for accurate cell positioning
|
||||
table_data = self._extract_table_data(elem_data)
|
||||
# Priority: rebuilt_table > HTML parsing
|
||||
# rebuilt_table contains clean cells without empty padding
|
||||
if 'rebuilt_table' in elem_data:
|
||||
rebuilt = elem_data['rebuilt_table']
|
||||
# Use rebuilt cells directly - they don't include empty cells
|
||||
rebuilt_cells = rebuilt.get('cells', [])
|
||||
from app.models.unified_document import TableCell
|
||||
table_cells = [
|
||||
TableCell(
|
||||
row=c.get('row', 0),
|
||||
col=c.get('col', 0),
|
||||
row_span=c.get('row_span', 1),
|
||||
col_span=c.get('col_span', 1),
|
||||
content=c.get('content', '')
|
||||
)
|
||||
for c in rebuilt_cells
|
||||
]
|
||||
table_data = TableData(
|
||||
rows=rebuilt.get('rows', 0),
|
||||
cols=rebuilt.get('cols', 0),
|
||||
cells=table_cells,
|
||||
caption=elem_data.get('extracted_text')
|
||||
)
|
||||
logger.info(f"[CONVERTER] Table {elem_data.get('element_id')}: Using rebuilt_table directly ({len(rebuilt_cells)} cells)")
|
||||
else:
|
||||
# Fallback to HTML parsing for non-rebuilt tables
|
||||
table_data = self._extract_table_data(elem_data)
|
||||
content = table_data if table_data else elem_data.get('content', '')
|
||||
|
||||
# Preserve cell_boxes and embedded_images in metadata for PDF generation
|
||||
@@ -756,6 +826,18 @@ class OCRToUnifiedConverter:
|
||||
|
||||
if 'embedded_images' in elem_data:
|
||||
elem_data.setdefault('metadata', {})['embedded_images'] = elem_data['embedded_images']
|
||||
|
||||
# Pass through rebuild information for tables that were rebuilt
|
||||
# This tells the PDF renderer to use HTML content instead of cell_boxes
|
||||
logger.info(f"[CONVERTER] Table {elem_data.get('element_id')}: checking for rebuild_stats, keys={list(elem_data.keys())}")
|
||||
if 'rebuild_stats' in elem_data:
|
||||
elem_data.setdefault('metadata', {})['rebuild_stats'] = elem_data['rebuild_stats']
|
||||
elem_data['metadata']['was_rebuilt'] = True
|
||||
logger.info(f"[CONVERTER] Table {elem_data.get('element_id')}: FOUND rebuild_stats, setting was_rebuilt=True")
|
||||
|
||||
if 'rebuilt_table' in elem_data:
|
||||
elem_data.setdefault('metadata', {})['rebuilt_table'] = elem_data['rebuilt_table']
|
||||
|
||||
elif element_type in [
|
||||
ElementType.IMAGE, ElementType.FIGURE, ElementType.CHART,
|
||||
ElementType.DIAGRAM, ElementType.LOGO, ElementType.STAMP
|
||||
|
||||
@@ -26,6 +26,23 @@ from html.parser import HTMLParser
|
||||
|
||||
from app.core.config import settings
|
||||
|
||||
# Import table column corrector for column alignment fix
|
||||
try:
|
||||
from app.services.table_column_corrector import TableColumnCorrector
|
||||
TABLE_COLUMN_CORRECTOR_AVAILABLE = True
|
||||
except ImportError:
|
||||
TABLE_COLUMN_CORRECTOR_AVAILABLE = False
|
||||
TableColumnCorrector = None
|
||||
|
||||
# Import text region renderer for simple text positioning
|
||||
try:
|
||||
from app.services.text_region_renderer import TextRegionRenderer, load_raw_ocr_regions
|
||||
TEXT_REGION_RENDERER_AVAILABLE = True
|
||||
except ImportError:
|
||||
TEXT_REGION_RENDERER_AVAILABLE = False
|
||||
TextRegionRenderer = None
|
||||
load_raw_ocr_regions = None
|
||||
|
||||
# Import UnifiedDocument for dual-track support
|
||||
try:
|
||||
from app.models.unified_document import (
|
||||
@@ -596,7 +613,8 @@ class PDFGeneratorService:
|
||||
'content': html_content,
|
||||
'bbox': [element.bbox.x0, element.bbox.y0,
|
||||
element.bbox.x1, element.bbox.y1],
|
||||
'page': page_num - 1 # layout uses 0-based
|
||||
'page': page_num - 1, # layout uses 0-based
|
||||
'element_id': element.element_id # For _use_border_only matching
|
||||
}
|
||||
|
||||
# Preserve cell_boxes and embedded_images from metadata
|
||||
@@ -607,18 +625,29 @@ class PDFGeneratorService:
|
||||
table_element['cell_boxes_source'] = element.metadata.get('cell_boxes_source', 'metadata')
|
||||
if 'embedded_images' in element.metadata:
|
||||
table_element['embedded_images'] = element.metadata['embedded_images']
|
||||
# Pass through rebuild flag - rebuilt tables should use HTML content
|
||||
if element.metadata.get('was_rebuilt'):
|
||||
table_element['was_rebuilt'] = True
|
||||
logger.debug(f"Table {element.element_id}: marked as rebuilt")
|
||||
|
||||
layout_elements.append(table_element)
|
||||
|
||||
# Add bbox to images_metadata for text overlap filtering
|
||||
# (no actual image file, just bbox for filtering)
|
||||
images_metadata.append({
|
||||
img_metadata = {
|
||||
'image_path': None, # No fake table image
|
||||
'bbox': bbox_polygon,
|
||||
'page': page_num - 1, # 0-based for images_metadata
|
||||
'type': 'table',
|
||||
'element_id': element.element_id
|
||||
})
|
||||
}
|
||||
# Also copy cell_boxes for quality checking
|
||||
if element.metadata and 'cell_boxes' in element.metadata:
|
||||
img_metadata['cell_boxes'] = element.metadata['cell_boxes']
|
||||
# Mark if table was rebuilt
|
||||
if element.metadata and element.metadata.get('was_rebuilt'):
|
||||
img_metadata['was_rebuilt'] = True
|
||||
images_metadata.append(img_metadata)
|
||||
|
||||
# Handle image/visual elements (including stamps/seals)
|
||||
elif element.is_visual or element.type in [
|
||||
@@ -1022,15 +1051,25 @@ class PDFGeneratorService:
|
||||
# Set current track
|
||||
self.current_processing_track = 'ocr'
|
||||
|
||||
# Convert UnifiedDocument to OCR data format (legacy)
|
||||
ocr_data = self.convert_unified_document_to_ocr_data(unified_doc)
|
||||
# Check if simple text positioning mode is enabled
|
||||
if (settings.simple_text_positioning_enabled and
|
||||
TEXT_REGION_RENDERER_AVAILABLE):
|
||||
logger.info("Using simple text positioning mode")
|
||||
result = self._generate_simple_text_pdf(
|
||||
unified_doc=unified_doc,
|
||||
output_path=output_path,
|
||||
source_file_path=source_file_path
|
||||
)
|
||||
else:
|
||||
# Convert UnifiedDocument to OCR data format (legacy)
|
||||
ocr_data = self.convert_unified_document_to_ocr_data(unified_doc)
|
||||
|
||||
# Use existing generation pipeline
|
||||
result = self._generate_pdf_from_data(
|
||||
ocr_data=ocr_data,
|
||||
output_path=output_path,
|
||||
source_file_path=source_file_path
|
||||
)
|
||||
# Use existing generation pipeline
|
||||
result = self._generate_pdf_from_data(
|
||||
ocr_data=ocr_data,
|
||||
output_path=output_path,
|
||||
source_file_path=source_file_path
|
||||
)
|
||||
|
||||
# Reset track
|
||||
self.current_processing_track = None
|
||||
@@ -1043,6 +1082,235 @@ class PDFGeneratorService:
|
||||
self.current_processing_track = None
|
||||
return False
|
||||
|
||||
def _generate_simple_text_pdf(
|
||||
self,
|
||||
unified_doc: 'UnifiedDocument',
|
||||
output_path: Path,
|
||||
source_file_path: Optional[Path] = None
|
||||
) -> bool:
|
||||
"""
|
||||
Generate PDF using simple text positioning from raw OCR regions.
|
||||
|
||||
This approach bypasses complex table structure reconstruction and renders
|
||||
raw OCR text directly at detected positions with rotation correction.
|
||||
Images, charts, figures, seals, and formulas are still rendered normally.
|
||||
|
||||
Args:
|
||||
unified_doc: UnifiedDocument from OCR processing
|
||||
output_path: Path to save generated PDF
|
||||
source_file_path: Optional path to original source file
|
||||
|
||||
Returns:
|
||||
True if successful, False otherwise
|
||||
"""
|
||||
try:
|
||||
logger.info("=== Simple Text Positioning PDF Generation ===")
|
||||
|
||||
# Initialize text region renderer
|
||||
text_renderer = TextRegionRenderer(
|
||||
font_name=self.font_name,
|
||||
debug=settings.simple_text_positioning_debug
|
||||
)
|
||||
|
||||
# Get result directory from output_path
|
||||
result_dir = output_path.parent
|
||||
|
||||
# Try to determine task_id from result directory or output filename
|
||||
# Output path is typically: result_dir/task_id_edited.pdf
|
||||
task_id = None
|
||||
if output_path.stem.endswith('_edited'):
|
||||
task_id = output_path.stem.replace('_edited', '')
|
||||
elif result_dir.name:
|
||||
# result_dir is typically the task_id directory
|
||||
task_id = result_dir.name
|
||||
|
||||
if not task_id:
|
||||
logger.warning("Could not determine task_id, falling back to legacy method")
|
||||
ocr_data = self.convert_unified_document_to_ocr_data(unified_doc)
|
||||
return self._generate_pdf_from_data(
|
||||
ocr_data=ocr_data,
|
||||
output_path=output_path,
|
||||
source_file_path=source_file_path
|
||||
)
|
||||
|
||||
logger.info(f"Task ID: {task_id}, Result dir: {result_dir}")
|
||||
|
||||
# Get total pages from UnifiedDocument
|
||||
total_pages = len(unified_doc.pages) if unified_doc.pages else 1
|
||||
|
||||
# Get page dimensions from first page (for canvas initialization)
|
||||
if not unified_doc.pages:
|
||||
logger.error("No pages in document")
|
||||
return False
|
||||
|
||||
first_page = unified_doc.pages[0]
|
||||
if hasattr(first_page, 'dimensions') and first_page.dimensions:
|
||||
page_width = float(first_page.dimensions.width)
|
||||
page_height = float(first_page.dimensions.height)
|
||||
else:
|
||||
# Fallback to default size
|
||||
page_width = 612.0 # Letter width
|
||||
page_height = 792.0 # Letter height
|
||||
logger.warning(f"No page dimensions found, using default {page_width}x{page_height}")
|
||||
|
||||
logger.info(f"Initial page size: {page_width:.1f} x {page_height:.1f}")
|
||||
|
||||
# Create PDF canvas
|
||||
pdf_canvas = canvas.Canvas(str(output_path), pagesize=(page_width, page_height))
|
||||
|
||||
# Collect image-type elements from UnifiedDocument for rendering
|
||||
# Types that should be rendered as images: figure, image, chart, seal, formula
|
||||
image_element_types = {'figure', 'image', 'chart', 'seal', 'formula'}
|
||||
|
||||
# Process each page
|
||||
for page_num in range(1, total_pages + 1):
|
||||
logger.info(f">>> Processing page {page_num}/{total_pages}")
|
||||
|
||||
# Get page dimensions for current page
|
||||
if page_num <= len(unified_doc.pages):
|
||||
current_page = unified_doc.pages[page_num - 1]
|
||||
if hasattr(current_page, 'dimensions') and current_page.dimensions:
|
||||
current_width = float(current_page.dimensions.width)
|
||||
current_height = float(current_page.dimensions.height)
|
||||
else:
|
||||
current_width = page_width
|
||||
current_height = page_height
|
||||
else:
|
||||
current_width = page_width
|
||||
current_height = page_height
|
||||
|
||||
if page_num > 1:
|
||||
pdf_canvas.showPage()
|
||||
|
||||
# Set page size
|
||||
pdf_canvas.setPageSize((current_width, current_height))
|
||||
|
||||
# === Layer 1: Render images, charts, figures, seals, formulas ===
|
||||
# Also collect exclusion zones for text avoidance
|
||||
exclusion_zones = [] # List of (x0, y0, x1, y1) tuples
|
||||
|
||||
if page_num <= len(unified_doc.pages):
|
||||
current_page = unified_doc.pages[page_num - 1]
|
||||
page_elements = current_page.elements if hasattr(current_page, 'elements') else []
|
||||
|
||||
image_elements_rendered = 0
|
||||
for elem in page_elements:
|
||||
elem_type = elem.type if hasattr(elem, 'type') else elem.get('type', '')
|
||||
# Handle enum type
|
||||
if hasattr(elem_type, 'value'):
|
||||
elem_type = elem_type.value
|
||||
|
||||
if elem_type in image_element_types:
|
||||
# Get image path from element content
|
||||
content = elem.content if hasattr(elem, 'content') else elem.get('content', {})
|
||||
if isinstance(content, dict):
|
||||
saved_path = content.get('saved_path') or content.get('path')
|
||||
else:
|
||||
saved_path = None
|
||||
|
||||
# Get bbox for exclusion zone (even if image file not found)
|
||||
bbox = elem.bbox if hasattr(elem, 'bbox') else elem.get('bbox', {})
|
||||
if hasattr(bbox, 'x0'):
|
||||
x0, y0, x1, y1 = bbox.x0, bbox.y0, bbox.x1, bbox.y1
|
||||
elif isinstance(bbox, dict):
|
||||
x0 = bbox.get('x0', 0)
|
||||
y0 = bbox.get('y0', 0)
|
||||
x1 = bbox.get('x1', x0 + bbox.get('width', 0))
|
||||
y1 = bbox.get('y1', y0 + bbox.get('height', 0))
|
||||
else:
|
||||
continue
|
||||
|
||||
# Add to exclusion zones for text avoidance
|
||||
# Use original image coordinates (not PDF flipped)
|
||||
exclusion_zones.append((x0, y0, x1, y1))
|
||||
|
||||
if saved_path:
|
||||
# Try to find the image file
|
||||
image_path = result_dir / saved_path
|
||||
if not image_path.exists():
|
||||
# Try in imgs subdirectory
|
||||
image_path = result_dir / 'imgs' / saved_path
|
||||
if not image_path.exists():
|
||||
# Try just the filename
|
||||
image_path = result_dir / Path(saved_path).name
|
||||
|
||||
if image_path.exists():
|
||||
try:
|
||||
# Convert coordinates (flip Y for PDF)
|
||||
pdf_x = x0
|
||||
pdf_y = current_height - y1 # Bottom of image in PDF coords
|
||||
img_width = x1 - x0
|
||||
img_height = y1 - y0
|
||||
|
||||
# Draw image
|
||||
pdf_canvas.drawImage(
|
||||
str(image_path),
|
||||
pdf_x, pdf_y,
|
||||
width=img_width,
|
||||
height=img_height,
|
||||
preserveAspectRatio=True,
|
||||
mask='auto'
|
||||
)
|
||||
image_elements_rendered += 1
|
||||
logger.debug(f"Rendered {elem_type}: {saved_path} at ({pdf_x:.1f}, {pdf_y:.1f})")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to render {elem_type} {saved_path}: {e}")
|
||||
else:
|
||||
logger.warning(f"Image file not found: {saved_path}")
|
||||
|
||||
if image_elements_rendered > 0:
|
||||
logger.info(f"Rendered {image_elements_rendered} image elements (figures/charts/seals/formulas)")
|
||||
|
||||
if exclusion_zones:
|
||||
logger.info(f"Collected {len(exclusion_zones)} exclusion zones for text avoidance")
|
||||
|
||||
# === Layer 2: Render text from raw OCR regions ===
|
||||
raw_regions = load_raw_ocr_regions(str(result_dir), task_id, page_num)
|
||||
|
||||
if not raw_regions:
|
||||
logger.warning(f"No raw OCR regions found for page {page_num}")
|
||||
else:
|
||||
logger.info(f"Loaded {len(raw_regions)} raw OCR regions for page {page_num}")
|
||||
|
||||
# Collect texts inside exclusion zones for position-aware deduplication
|
||||
# This prevents duplicate axis labels from being rendered near charts
|
||||
zone_texts = None
|
||||
if exclusion_zones:
|
||||
zone_texts = text_renderer.collect_zone_texts(
|
||||
raw_regions, exclusion_zones, threshold=0.5, include_axis_labels=True
|
||||
)
|
||||
if zone_texts:
|
||||
logger.info(f"Collected {len(zone_texts)} zone texts for deduplication: {list(zone_texts)[:10]}...")
|
||||
|
||||
# Render all text regions, avoiding exclusion zones (images/charts)
|
||||
# Scale factors are 1.0 since OCR dimensions match page dimensions
|
||||
rendered = text_renderer.render_all_regions(
|
||||
pdf_canvas=pdf_canvas,
|
||||
regions=raw_regions,
|
||||
page_height=current_height,
|
||||
scale_x=1.0,
|
||||
scale_y=1.0,
|
||||
exclusion_zones=exclusion_zones,
|
||||
zone_texts=zone_texts
|
||||
)
|
||||
|
||||
logger.info(f"Rendered {rendered} text regions")
|
||||
|
||||
logger.info(f"<<< Page {page_num} complete")
|
||||
|
||||
# Save PDF
|
||||
pdf_canvas.save()
|
||||
|
||||
file_size = output_path.stat().st_size
|
||||
logger.info(f"Generated PDF: {output_path.name} ({file_size} bytes)")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate simple text PDF: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
def _generate_pdf_from_data(
|
||||
self,
|
||||
ocr_data: Dict,
|
||||
@@ -1093,8 +1361,15 @@ class PDFGeneratorService:
|
||||
logger.info("No page_dimensions found, using first page size for all pages")
|
||||
|
||||
# Step 3: Get original file dimensions for all pages
|
||||
# For OCR track, we use OCR coordinate system dimensions directly to avoid scaling issues
|
||||
original_page_sizes = {}
|
||||
if source_file_path:
|
||||
use_ocr_dimensions_for_pdf = (self.current_processing_track == 'ocr')
|
||||
|
||||
if use_ocr_dimensions_for_pdf:
|
||||
# OCR Track: Use OCR coordinate system dimensions directly
|
||||
# This ensures no scaling is needed (scale = 1.0)
|
||||
logger.info(f"OCR Track: 使用 OCR 座標系尺寸作為 PDF 頁面尺寸(避免縮放)")
|
||||
elif source_file_path:
|
||||
original_page_sizes = self.get_all_page_sizes(source_file_path)
|
||||
if original_page_sizes:
|
||||
logger.info(f"從原始文件獲取到 {len(original_page_sizes)} 頁尺寸")
|
||||
@@ -1104,8 +1379,12 @@ class PDFGeneratorService:
|
||||
logger.info(f"無原始文件,將使用 OCR/UnifiedDocument 尺寸")
|
||||
|
||||
# Determine initial canvas size (will be updated per page)
|
||||
# Priority: original file first page > OCR/UnifiedDocument first page
|
||||
if 0 in original_page_sizes:
|
||||
# Priority for OCR track: OCR dimensions (no scaling)
|
||||
# Priority for Direct track: original file first page > OCR/UnifiedDocument first page
|
||||
if use_ocr_dimensions_for_pdf:
|
||||
target_width, target_height = ocr_width, ocr_height
|
||||
logger.info(f"初始 PDF 尺寸(OCR Track, 使用 OCR 座標系): {target_width:.1f} x {target_height:.1f}")
|
||||
elif 0 in original_page_sizes:
|
||||
target_width, target_height = original_page_sizes[0]
|
||||
logger.info(f"初始 PDF 尺寸(來自原始文件首頁): {target_width:.1f} x {target_height:.1f}")
|
||||
else:
|
||||
@@ -1159,14 +1438,49 @@ class PDFGeneratorService:
|
||||
# Create PDF canvas with initial page size (will be updated per page)
|
||||
pdf_canvas = canvas.Canvas(str(output_path), pagesize=(target_width, target_height))
|
||||
|
||||
# LAYERED RENDERING: Exclude tables from regions_to_avoid
|
||||
# Text inside tables will be rendered at raw OCR positions (via GapFillingService)
|
||||
# while table borders are drawn separately using cell_boxes
|
||||
# Only avoid overlap with actual images/figures/charts
|
||||
regions_to_avoid = [img for img in images_metadata if img.get('type') != 'table']
|
||||
table_count = len([img for img in images_metadata if img.get('type') == 'table'])
|
||||
# Smart filtering: only include tables with good cell_boxes quality in regions_to_avoid
|
||||
# Tables with bad cell_boxes will use raw OCR text positioning instead
|
||||
# Exception: Rebuilt tables always use HTML content and filter text
|
||||
regions_to_avoid = []
|
||||
good_quality_tables = []
|
||||
bad_quality_tables = []
|
||||
rebuilt_tables = []
|
||||
|
||||
logger.info(f"過濾文字區域: {len(regions_to_avoid)} 個區域需要避免 (不含表格), {table_count} 個表格使用分層渲染")
|
||||
for img in images_metadata:
|
||||
if img.get('type') == 'table':
|
||||
elem_id = img.get('element_id', 'unknown')
|
||||
|
||||
# Check if this table was rebuilt - rebuilt tables have good content
|
||||
was_rebuilt = img.get('was_rebuilt', False)
|
||||
|
||||
if was_rebuilt:
|
||||
# Rebuilt tables have accurate content - filter text, use HTML
|
||||
regions_to_avoid.append(img)
|
||||
rebuilt_tables.append(elem_id)
|
||||
else:
|
||||
# Check cell_boxes quality for non-rebuilt tables
|
||||
cell_boxes = img.get('cell_boxes', [])
|
||||
quality = self._check_cell_boxes_quality(cell_boxes, elem_id)
|
||||
|
||||
if quality == 'good':
|
||||
# Good quality: filter text, render with cell_boxes
|
||||
regions_to_avoid.append(img)
|
||||
good_quality_tables.append(elem_id)
|
||||
else:
|
||||
# Bad quality: don't filter text, just draw border
|
||||
bad_quality_tables.append(elem_id)
|
||||
img['_use_border_only'] = True # Mark for border-only rendering
|
||||
else:
|
||||
# Non-table elements (images, figures, charts) always avoid
|
||||
regions_to_avoid.append(img)
|
||||
|
||||
logger.info(f"過濾文字區域: {len(regions_to_avoid)} 個區域需要避免")
|
||||
if rebuilt_tables:
|
||||
logger.info(f" 重建表格用 HTML: {rebuilt_tables}")
|
||||
if good_quality_tables:
|
||||
logger.info(f" 表格用 cell_boxes: {good_quality_tables}")
|
||||
if bad_quality_tables:
|
||||
logger.info(f" 表格用 raw OCR text (border only): {bad_quality_tables}")
|
||||
|
||||
filtered_text_regions = self._filter_text_in_regions(text_regions, regions_to_avoid)
|
||||
|
||||
@@ -1178,10 +1492,24 @@ class PDFGeneratorService:
|
||||
pages_data[page_num] = []
|
||||
pages_data[page_num].append(region)
|
||||
|
||||
# Get table elements from layout_data
|
||||
# Get table elements from layout_data and copy _use_border_only flags
|
||||
table_elements = []
|
||||
if layout_data and layout_data.get('elements'):
|
||||
table_elements = [e for e in layout_data['elements'] if e.get('type') == 'table']
|
||||
# Create a lookup for _use_border_only flags from images_metadata
|
||||
border_only_tables = {img.get('element_id') for img in images_metadata
|
||||
if img.get('type') == 'table' and img.get('_use_border_only')}
|
||||
|
||||
logger.debug(f"[DEBUG] border_only_tables from images_metadata: {border_only_tables}")
|
||||
|
||||
for e in layout_data['elements']:
|
||||
if e.get('type') == 'table':
|
||||
elem_id = e.get('element_id')
|
||||
logger.debug(f"[DEBUG] layout_data table element_id: {elem_id}")
|
||||
# Copy the flag if this table should use border only
|
||||
if elem_id in border_only_tables:
|
||||
e['_use_border_only'] = True
|
||||
logger.info(f"[DEBUG] Set _use_border_only=True for table {elem_id}")
|
||||
table_elements.append(e)
|
||||
|
||||
# Process each page
|
||||
total_pages = ocr_data.get('total_pages', 1)
|
||||
@@ -1195,14 +1523,23 @@ class PDFGeneratorService:
|
||||
logger.info(f">>> 處理第 {page_num}/{total_pages} 頁")
|
||||
|
||||
# Get current page dimensions with priority order:
|
||||
# 1. Original file dimensions (highest priority)
|
||||
# 2. OCR/UnifiedDocument dimensions
|
||||
# 3. Fallback to first page dimensions
|
||||
# For OCR Track: always use OCR dimensions (scale = 1.0)
|
||||
# For Direct Track:
|
||||
# 1. Original file dimensions (highest priority)
|
||||
# 2. OCR/UnifiedDocument dimensions
|
||||
# 3. Fallback to first page dimensions
|
||||
page_idx = page_num - 1
|
||||
dimension_source = "unknown"
|
||||
|
||||
# Priority 1: Original file dimensions
|
||||
if page_idx in original_page_sizes:
|
||||
# For OCR Track: always use OCR dimensions
|
||||
if use_ocr_dimensions_for_pdf and page_idx in page_dimensions:
|
||||
current_page_dims = page_dimensions[page_idx]
|
||||
current_target_w = float(current_page_dims['width'])
|
||||
current_target_h = float(current_page_dims['height'])
|
||||
dimension_source = "ocr_track_direct"
|
||||
|
||||
# Priority 1: Original file dimensions (Direct Track only)
|
||||
elif page_idx in original_page_sizes:
|
||||
current_target_w, current_target_h = original_page_sizes[page_idx]
|
||||
dimension_source = "original_file"
|
||||
|
||||
@@ -1774,12 +2111,26 @@ class PDFGeneratorService:
|
||||
non_empty_lines = [l for l in lines if l.strip()]
|
||||
num_lines = max(len(non_empty_lines), 1)
|
||||
|
||||
# Font size = bbox_height / num_lines * factor
|
||||
# Font size calculation with stabilization
|
||||
# Use 0.8 factor to leave room for line spacing
|
||||
font_size = (bbox_height / num_lines) * 0.8
|
||||
font_size = max(min(font_size, 72), 4) # Clamp between 4pt and 72pt
|
||||
raw_font_size = (bbox_height / num_lines) * 0.8
|
||||
|
||||
logger.debug(f"Text has {num_lines} non-empty lines, bbox_height={bbox_height:.1f}, calculated font_size={font_size:.1f}")
|
||||
# Stabilize font size for body text (most common case)
|
||||
# Normal body text should be 9-11pt, only deviate for clear outliers
|
||||
element_type = region.get('element_type', 'text')
|
||||
if element_type in ('text', 'paragraph'):
|
||||
# For body text, bias toward 10pt baseline
|
||||
if 7 <= raw_font_size <= 14:
|
||||
# Near-normal range: use weighted average toward 10pt
|
||||
font_size = raw_font_size * 0.7 + 10 * 0.3
|
||||
else:
|
||||
# Clear outlier: use raw but clamp more aggressively
|
||||
font_size = max(min(raw_font_size, 14), 7)
|
||||
else:
|
||||
# For titles/headers/etc, use raw calculation with wider range
|
||||
font_size = max(min(raw_font_size, 72), 4)
|
||||
|
||||
logger.debug(f"Text has {num_lines} non-empty lines, bbox_height={bbox_height:.1f}, raw={raw_font_size:.1f}, final={font_size:.1f}")
|
||||
|
||||
# Transform coordinates: OCR (top-left origin) → PDF (bottom-left origin)
|
||||
# CRITICAL: Y-axis flip!
|
||||
@@ -2008,24 +2359,45 @@ class PDFGeneratorService:
|
||||
result_dir: Directory containing result files (for embedded images)
|
||||
"""
|
||||
try:
|
||||
elem_id = table_element.get('element_id', 'unknown')
|
||||
use_border_only = table_element.get('_use_border_only', False)
|
||||
logger.info(f"[DEBUG] draw_table_region: elem_id={elem_id}, _use_border_only={use_border_only}")
|
||||
|
||||
html_content = table_element.get('content', '')
|
||||
if not html_content:
|
||||
# Even without HTML, draw border if requested
|
||||
if use_border_only:
|
||||
self._draw_table_border_only(pdf_canvas, table_element, page_height, scale_w, scale_h)
|
||||
return
|
||||
|
||||
# Try to use cell_boxes for direct rendering first (more accurate)
|
||||
# Apply column correction if enabled
|
||||
cell_boxes = table_element.get('cell_boxes', [])
|
||||
if cell_boxes:
|
||||
logger.info(f"[TABLE] Using cell_boxes direct rendering ({len(cell_boxes)} cells)")
|
||||
success = self._draw_table_with_cell_boxes(
|
||||
pdf_canvas, table_element, page_height,
|
||||
scale_w, scale_h, result_dir
|
||||
)
|
||||
if success:
|
||||
return # Successfully rendered with cell_boxes
|
||||
if (settings.table_column_correction_enabled and
|
||||
TABLE_COLUMN_CORRECTOR_AVAILABLE and
|
||||
cell_boxes):
|
||||
try:
|
||||
corrector = TableColumnCorrector(
|
||||
correction_threshold=settings.table_column_correction_threshold,
|
||||
vertical_merge_enabled=settings.vertical_fragment_merge_enabled,
|
||||
vertical_aspect_ratio=settings.vertical_fragment_aspect_ratio
|
||||
)
|
||||
# Get table bbox for vertical fragment detection
|
||||
table_bbox = table_element.get('bbox', [])
|
||||
if isinstance(table_bbox, dict):
|
||||
table_bbox = [table_bbox['x0'], table_bbox['y0'], table_bbox['x1'], table_bbox['y1']]
|
||||
|
||||
logger.info("[TABLE] Falling back to ReportLab Table")
|
||||
corrected_html, stats = corrector.correct(
|
||||
html=html_content,
|
||||
cell_boxes=cell_boxes,
|
||||
table_bbox=table_bbox if isinstance(table_bbox, list) and len(table_bbox) >= 4 else None
|
||||
)
|
||||
if stats.get('column_corrections', 0) > 0:
|
||||
logger.info(f"[TABLE] {elem_id}: Column correction applied - {stats}")
|
||||
html_content = corrected_html
|
||||
except Exception as e:
|
||||
logger.warning(f"[TABLE] {elem_id}: Column correction failed: {e}, using original HTML")
|
||||
|
||||
# Fallback: Parse HTML to extract table structure and use ReportLab Table
|
||||
# Parse HTML first to get table structure for grid validation
|
||||
parser = HTMLTableParser()
|
||||
parser.feed(html_content)
|
||||
|
||||
@@ -2040,6 +2412,83 @@ class PDFGeneratorService:
|
||||
if not rows:
|
||||
return
|
||||
|
||||
# Calculate number of rows and columns from HTML for grid validation
|
||||
num_rows = len(rows)
|
||||
max_cols = 0
|
||||
for row in rows:
|
||||
row_cols = sum(cell.get('colspan', 1) for cell in row['cells'])
|
||||
max_cols = max(max_cols, row_cols)
|
||||
|
||||
# Check if table was rebuilt - if so, use HTML content directly
|
||||
was_rebuilt = table_element.get('was_rebuilt', False)
|
||||
cell_boxes_rendered = False # Track if we rendered borders with cell_boxes
|
||||
|
||||
if was_rebuilt:
|
||||
logger.info(f"[TABLE] {elem_id}: Table was rebuilt, using HTML content directly")
|
||||
elif use_border_only:
|
||||
# Bad quality cell_boxes: skip cell_boxes rendering, use ReportLab Table with borders
|
||||
logger.info(f"[TABLE] {elem_id}: Bad cell_boxes quality, using ReportLab Table with borders")
|
||||
else:
|
||||
# Check if cell_boxes can produce a valid grid before rendering borders
|
||||
cell_boxes = table_element.get('cell_boxes', [])
|
||||
if cell_boxes:
|
||||
# Get table bbox for grid calculation
|
||||
temp_bbox = table_element.get('bbox', [])
|
||||
if isinstance(temp_bbox, dict):
|
||||
raw_bbox = [temp_bbox['x0'], temp_bbox['y0'], temp_bbox['x1'], temp_bbox['y1']]
|
||||
elif isinstance(temp_bbox, list) and len(temp_bbox) >= 4:
|
||||
if isinstance(temp_bbox[0], (int, float)):
|
||||
raw_bbox = temp_bbox[:4]
|
||||
else:
|
||||
raw_bbox = [temp_bbox[0][0], temp_bbox[0][1], temp_bbox[2][0], temp_bbox[2][1]]
|
||||
else:
|
||||
raw_bbox = None
|
||||
|
||||
# Pre-check: can we compute a valid grid from cell_boxes?
|
||||
if raw_bbox:
|
||||
test_col_widths, test_row_heights = self._compute_table_grid_from_cell_boxes(
|
||||
cell_boxes, raw_bbox, num_rows, max_cols
|
||||
)
|
||||
grid_valid = test_col_widths is not None and test_row_heights is not None
|
||||
|
||||
if grid_valid:
|
||||
logger.info(f"[TABLE] Grid validation passed, rendering borders with cell_boxes")
|
||||
success = self._draw_table_with_cell_boxes(
|
||||
pdf_canvas, table_element, page_height,
|
||||
scale_w, scale_h, result_dir
|
||||
)
|
||||
if success:
|
||||
cell_boxes_rendered = True
|
||||
logger.info("[TABLE] cell_boxes rendered borders, continuing with text-only ReportLab Table")
|
||||
else:
|
||||
logger.info("[TABLE] cell_boxes rendering failed, using ReportLab Table with borders")
|
||||
else:
|
||||
# Grid mismatch: try cellboxes-first rendering if enabled
|
||||
if settings.table_rendering_prefer_cellboxes:
|
||||
logger.info(f"[TABLE] Grid mismatch, trying cellboxes-first rendering")
|
||||
from app.services.pdf_table_renderer import TableRenderer, TableRenderConfig
|
||||
renderer = TableRenderer(TableRenderConfig())
|
||||
success = renderer.render_from_cellboxes_grid(
|
||||
pdf_canvas,
|
||||
cell_boxes,
|
||||
html_content,
|
||||
tuple(raw_bbox),
|
||||
page_height,
|
||||
scale_w,
|
||||
scale_h,
|
||||
row_threshold=settings.table_cellboxes_row_threshold,
|
||||
col_threshold=settings.table_cellboxes_col_threshold
|
||||
)
|
||||
if success:
|
||||
logger.info("[TABLE] cellboxes-first rendering succeeded, skipping HTML-based rendering")
|
||||
return # Table fully rendered, exit early
|
||||
else:
|
||||
logger.info("[TABLE] cellboxes-first rendering failed, falling back to HTML-based")
|
||||
else:
|
||||
logger.info(f"[TABLE] Grid validation failed (mismatch), using ReportLab Table with borders")
|
||||
else:
|
||||
logger.info("[TABLE] No valid bbox for grid validation, using ReportLab Table with borders")
|
||||
|
||||
# Get bbox directly from table element
|
||||
table_bbox = table_element.get('bbox')
|
||||
|
||||
@@ -2106,15 +2555,7 @@ class PDFGeneratorService:
|
||||
pdf_y = page_height - ocr_y_bottom
|
||||
|
||||
# Build table data for ReportLab with proper colspan/rowspan handling
|
||||
# First pass: determine the actual grid size by accounting for spans
|
||||
num_rows = len(rows)
|
||||
|
||||
# Calculate actual number of columns by checking first row's total span
|
||||
max_cols = 0
|
||||
for row in rows:
|
||||
row_cols = sum(cell.get('colspan', 1) for cell in row['cells'])
|
||||
max_cols = max(max_cols, row_cols)
|
||||
|
||||
# num_rows and max_cols already calculated above for grid validation
|
||||
logger.info(f"[表格] {num_rows}行x{max_cols}列 → PDF位置: ({pdf_x:.1f}, {pdf_y:.1f}), 寬x高: {table_width:.0f}x{table_height:.0f}")
|
||||
|
||||
# Create a grid to track occupied cells (for rowspan handling)
|
||||
@@ -2223,16 +2664,25 @@ class PDFGeneratorService:
|
||||
logger.info(f"[TABLE] Created with {len(col_widths)} cols, {len(row_heights)} rows")
|
||||
|
||||
# Apply table style
|
||||
style = TableStyle([
|
||||
# If cell_boxes rendered borders, skip GRID style (text-only rendering)
|
||||
style_commands = [
|
||||
('FONT', (0, 0), (-1, -1), self.font_name if self.font_registered else 'Helvetica', font_size),
|
||||
('GRID', (0, 0), (-1, -1), 0.5, colors.black),
|
||||
('VALIGN', (0, 0), (-1, -1), 'MIDDLE'),
|
||||
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
|
||||
('LEFTPADDING', (0, 0), (-1, -1), 2),
|
||||
('RIGHTPADDING', (0, 0), (-1, -1), 2),
|
||||
('TOPPADDING', (0, 0), (-1, -1), 2),
|
||||
('BOTTOMPADDING', (0, 0), (-1, -1), 2),
|
||||
])
|
||||
]
|
||||
|
||||
# Only add GRID if cell_boxes didn't render borders
|
||||
if not cell_boxes_rendered:
|
||||
style_commands.insert(1, ('GRID', (0, 0), (-1, -1), 0.5, colors.black))
|
||||
logger.info("[TABLE] Adding GRID style (cell_boxes not used)")
|
||||
else:
|
||||
logger.info("[TABLE] Skipping GRID style (cell_boxes rendered borders)")
|
||||
|
||||
style = TableStyle(style_commands)
|
||||
|
||||
# Add header style if first row has headers
|
||||
if rows and rows[0]['cells'] and rows[0]['cells'][0].get('is_header'):
|
||||
@@ -2435,6 +2885,106 @@ class PDFGeneratorService:
|
||||
logger.debug(f"[TABLE] Normalized {len(cell_boxes)} cell boxes to grid")
|
||||
return normalized_boxes
|
||||
|
||||
def _draw_table_border_only(
|
||||
self,
|
||||
pdf_canvas: canvas.Canvas,
|
||||
table_element: Dict,
|
||||
page_height: float,
|
||||
scale_w: float = 1.0,
|
||||
scale_h: float = 1.0
|
||||
):
|
||||
"""
|
||||
Draw only the outer border of a table (for tables with bad cell_boxes quality).
|
||||
|
||||
Text inside the table will be rendered using raw OCR positions.
|
||||
|
||||
Args:
|
||||
pdf_canvas: ReportLab canvas object
|
||||
table_element: Table element dict
|
||||
page_height: Height of page in PDF coordinates
|
||||
scale_w: Scale factor for X coordinates
|
||||
scale_h: Scale factor for Y coordinates
|
||||
"""
|
||||
table_bbox = table_element.get('bbox', [])
|
||||
if not table_bbox or len(table_bbox) < 4:
|
||||
return
|
||||
|
||||
element_id = table_element.get('element_id', 'unknown')
|
||||
|
||||
# Handle different bbox formats
|
||||
if isinstance(table_bbox, dict):
|
||||
x0, y0, x1, y1 = table_bbox['x0'], table_bbox['y0'], table_bbox['x1'], table_bbox['y1']
|
||||
elif isinstance(table_bbox[0], (int, float)):
|
||||
x0, y0, x1, y1 = table_bbox[0], table_bbox[1], table_bbox[2], table_bbox[3]
|
||||
else:
|
||||
return
|
||||
|
||||
# Apply scaling
|
||||
pdf_x0 = x0 * scale_w
|
||||
pdf_y0 = y0 * scale_h
|
||||
pdf_x1 = x1 * scale_w
|
||||
pdf_y1 = y1 * scale_h
|
||||
|
||||
# Convert to PDF coordinates (flip Y)
|
||||
pdf_top = page_height - pdf_y0
|
||||
pdf_bottom = page_height - pdf_y1
|
||||
width = pdf_x1 - pdf_x0
|
||||
height = pdf_y1 - pdf_y0
|
||||
|
||||
# Draw outer border only
|
||||
pdf_canvas.setStrokeColor(colors.black)
|
||||
pdf_canvas.setLineWidth(0.5)
|
||||
pdf_canvas.rect(pdf_x0, pdf_bottom, width, height, stroke=1, fill=0)
|
||||
|
||||
logger.info(f"[TABLE] {element_id}: Drew border only (bad cell_boxes quality)")
|
||||
|
||||
def _check_cell_boxes_quality(self, cell_boxes: List, element_id: str = "") -> str:
|
||||
"""
|
||||
Check the quality of cell_boxes to determine rendering strategy.
|
||||
|
||||
Args:
|
||||
cell_boxes: List of cell bounding boxes
|
||||
element_id: Optional element ID for logging
|
||||
|
||||
Returns:
|
||||
'good' if cell_boxes form a proper grid, 'bad' otherwise
|
||||
"""
|
||||
# If quality check is disabled, always return 'good' to use pure PP-Structure output
|
||||
if not settings.table_quality_check_enabled:
|
||||
logger.debug(f"[TABLE QUALITY] {element_id}: good - quality check disabled (pure PP-Structure mode)")
|
||||
return 'good'
|
||||
|
||||
if not cell_boxes or len(cell_boxes) < 2:
|
||||
logger.debug(f"[TABLE QUALITY] {element_id}: bad - too few cells ({len(cell_boxes) if cell_boxes else 0})")
|
||||
return 'bad' # No cell_boxes or too few
|
||||
|
||||
# Count overlapping cell pairs
|
||||
overlap_count = 0
|
||||
for i, box1 in enumerate(cell_boxes):
|
||||
for j, box2 in enumerate(cell_boxes):
|
||||
if i >= j:
|
||||
continue
|
||||
if not isinstance(box1, (list, tuple)) or len(box1) < 4:
|
||||
continue
|
||||
if not isinstance(box2, (list, tuple)) or len(box2) < 4:
|
||||
continue
|
||||
x_overlap = box1[0] < box2[2] and box1[2] > box2[0]
|
||||
y_overlap = box1[1] < box2[3] and box1[3] > box2[1]
|
||||
if x_overlap and y_overlap:
|
||||
overlap_count += 1
|
||||
|
||||
total_pairs = len(cell_boxes) * (len(cell_boxes) - 1) // 2
|
||||
overlap_ratio = overlap_count / total_pairs if total_pairs > 0 else 0
|
||||
|
||||
# Relaxed threshold: 20% overlap instead of 10% to allow more tables through
|
||||
# This is because PP-StructureV3's cell detection sometimes has slight overlaps
|
||||
if overlap_ratio > 0.20:
|
||||
logger.info(f"[TABLE QUALITY] {element_id}: bad - overlap ratio {overlap_ratio:.2%} > 20%")
|
||||
return 'bad'
|
||||
|
||||
logger.debug(f"[TABLE QUALITY] {element_id}: good - {len(cell_boxes)} cells, overlap {overlap_ratio:.2%}")
|
||||
return 'good'
|
||||
|
||||
def _draw_table_with_cell_boxes(
|
||||
self,
|
||||
pdf_canvas: canvas.Canvas,
|
||||
@@ -2465,39 +3015,64 @@ class PDFGeneratorService:
|
||||
"""
|
||||
try:
|
||||
cell_boxes = table_element.get('cell_boxes', [])
|
||||
|
||||
# Always draw outer table border first (fallback for incomplete cell_boxes)
|
||||
table_bbox = table_element.get('bbox', [])
|
||||
if table_bbox and len(table_bbox) >= 4:
|
||||
# Handle different bbox formats (list or dict)
|
||||
if isinstance(table_bbox, dict):
|
||||
tx1 = float(table_bbox.get('x0', 0))
|
||||
ty1 = float(table_bbox.get('y0', 0))
|
||||
tx2 = float(table_bbox.get('x1', 0))
|
||||
ty2 = float(table_bbox.get('y1', 0))
|
||||
else:
|
||||
tx1, ty1, tx2, ty2 = table_bbox[:4]
|
||||
|
||||
# Apply scaling
|
||||
tx1_scaled = tx1 * scale_w
|
||||
ty1_scaled = ty1 * scale_h
|
||||
tx2_scaled = tx2 * scale_w
|
||||
ty2_scaled = ty2 * scale_h
|
||||
# Check cell_boxes quality - skip if they don't form a proper grid
|
||||
if cell_boxes and len(cell_boxes) > 2:
|
||||
# Count overlapping cell pairs
|
||||
overlap_count = 0
|
||||
for i, box1 in enumerate(cell_boxes):
|
||||
for j, box2 in enumerate(cell_boxes):
|
||||
if i >= j:
|
||||
continue
|
||||
x_overlap = box1[0] < box2[2] and box1[2] > box2[0]
|
||||
y_overlap = box1[1] < box2[3] and box1[3] > box2[1]
|
||||
if x_overlap and y_overlap:
|
||||
overlap_count += 1
|
||||
|
||||
table_width = tx2_scaled - tx1_scaled
|
||||
table_height = ty2_scaled - ty1_scaled
|
||||
# If more than 25% of cell pairs overlap, cell_boxes are unreliable
|
||||
# Increased from 10% to 25% to allow more tables to use cell_boxes rendering
|
||||
# which provides better visual fidelity than ReportLab Table fallback
|
||||
total_pairs = len(cell_boxes) * (len(cell_boxes) - 1) // 2
|
||||
overlap_ratio = overlap_count / total_pairs if total_pairs > 0 else 0
|
||||
|
||||
# Transform Y coordinate (PDF uses bottom-left origin)
|
||||
pdf_x = tx1_scaled
|
||||
pdf_y = page_height - ty2_scaled # Bottom of table in PDF coords
|
||||
|
||||
# Draw outer table border (slightly thicker for visibility)
|
||||
pdf_canvas.setStrokeColor(colors.black)
|
||||
pdf_canvas.setLineWidth(1.0)
|
||||
pdf_canvas.rect(pdf_x, pdf_y, table_width, table_height, stroke=1, fill=0)
|
||||
logger.info(f"[TABLE] Drew outer table border at [{int(tx1)},{int(ty1)},{int(tx2)},{int(ty2)}]")
|
||||
if overlap_ratio > 0.25:
|
||||
logger.warning(
|
||||
f"[TABLE] Skipping cell_boxes rendering: {overlap_count}/{total_pairs} "
|
||||
f"({overlap_ratio:.1%}) cell pairs overlap - using ReportLab Table fallback"
|
||||
)
|
||||
return False # Return False to trigger ReportLab Table fallback
|
||||
|
||||
if not cell_boxes:
|
||||
# Fallback: draw outer border only when no cell_boxes
|
||||
if table_bbox and len(table_bbox) >= 4:
|
||||
# Handle different bbox formats (list or dict)
|
||||
if isinstance(table_bbox, dict):
|
||||
tx1 = float(table_bbox.get('x0', 0))
|
||||
ty1 = float(table_bbox.get('y0', 0))
|
||||
tx2 = float(table_bbox.get('x1', 0))
|
||||
ty2 = float(table_bbox.get('y1', 0))
|
||||
else:
|
||||
tx1, ty1, tx2, ty2 = table_bbox[:4]
|
||||
|
||||
# Apply scaling
|
||||
tx1_scaled = tx1 * scale_w
|
||||
ty1_scaled = ty1 * scale_h
|
||||
tx2_scaled = tx2 * scale_w
|
||||
ty2_scaled = ty2 * scale_h
|
||||
|
||||
table_width = tx2_scaled - tx1_scaled
|
||||
table_height = ty2_scaled - ty1_scaled
|
||||
|
||||
# Transform Y coordinate (PDF uses bottom-left origin)
|
||||
pdf_x = tx1_scaled
|
||||
pdf_y = page_height - ty2_scaled # Bottom of table in PDF coords
|
||||
|
||||
# Draw outer table border (slightly thicker for visibility)
|
||||
pdf_canvas.setStrokeColor(colors.black)
|
||||
pdf_canvas.setLineWidth(1.0)
|
||||
pdf_canvas.rect(pdf_x, pdf_y, table_width, table_height, stroke=1, fill=0)
|
||||
logger.info(f"[TABLE] Drew outer table border at [{int(tx1)},{int(ty1)},{int(tx2)},{int(ty2)}]")
|
||||
logger.warning("[TABLE] No cell_boxes available, only outer border drawn")
|
||||
# Still draw embedded images even without cell borders
|
||||
embedded_images = table_element.get('embedded_images', [])
|
||||
@@ -2511,31 +3086,47 @@ class PDFGeneratorService:
|
||||
# Normalize cell boxes to create aligned grid
|
||||
cell_boxes = self._normalize_cell_boxes_to_grid(cell_boxes)
|
||||
|
||||
logger.info(f"[TABLE] Drawing {len(cell_boxes)} cell borders (layered mode, grid-aligned)")
|
||||
logger.info(f"[TABLE] Drawing {len(cell_boxes)} cells using grid lines (avoiding duplicates)")
|
||||
|
||||
# Collect unique grid lines to avoid drawing duplicate/overlapping lines
|
||||
h_lines = set() # Horizontal lines: (y, x_start, x_end)
|
||||
v_lines = set() # Vertical lines: (x, y_start, y_end)
|
||||
|
||||
# Draw each cell border
|
||||
for box in cell_boxes:
|
||||
x1, y1, x2, y2 = box[0], box[1], box[2], box[3]
|
||||
|
||||
# Apply scaling
|
||||
x1_scaled = x1 * scale_w
|
||||
y1_scaled = y1 * scale_h
|
||||
x2_scaled = x2 * scale_w
|
||||
y2_scaled = y2 * scale_h
|
||||
x1_s = x1 * scale_w
|
||||
y1_s = y1 * scale_h
|
||||
x2_s = x2 * scale_w
|
||||
y2_s = y2 * scale_h
|
||||
|
||||
cell_width = x2_scaled - x1_scaled
|
||||
cell_height = y2_scaled - y1_scaled
|
||||
# Round to 1 decimal place to help with deduplication
|
||||
x1_s, y1_s, x2_s, y2_s = round(x1_s, 1), round(y1_s, 1), round(x2_s, 1), round(y2_s, 1)
|
||||
|
||||
# Transform Y coordinate (PDF uses bottom-left origin)
|
||||
pdf_x = x1_scaled
|
||||
pdf_y = page_height - y2_scaled # Bottom of cell in PDF coords
|
||||
# Add horizontal lines (top and bottom of cell)
|
||||
h_lines.add((y1_s, x1_s, x2_s)) # Top line
|
||||
h_lines.add((y2_s, x1_s, x2_s)) # Bottom line
|
||||
|
||||
# Draw cell border only (no fill, no text)
|
||||
pdf_canvas.setStrokeColor(colors.black)
|
||||
pdf_canvas.setLineWidth(0.5)
|
||||
pdf_canvas.rect(pdf_x, pdf_y, cell_width, cell_height, stroke=1, fill=0)
|
||||
# Add vertical lines (left and right of cell)
|
||||
v_lines.add((x1_s, y1_s, y2_s)) # Left line
|
||||
v_lines.add((x2_s, y1_s, y2_s)) # Right line
|
||||
|
||||
logger.info(f"[TABLE] Drew {len(cell_boxes)} cell borders")
|
||||
# Draw unique horizontal lines
|
||||
pdf_canvas.setStrokeColor(colors.black)
|
||||
pdf_canvas.setLineWidth(0.5)
|
||||
|
||||
for y, x_start, x_end in h_lines:
|
||||
pdf_y = page_height - y # Transform Y coordinate
|
||||
pdf_canvas.line(x_start, pdf_y, x_end, pdf_y)
|
||||
|
||||
# Draw unique vertical lines
|
||||
for x, y_start, y_end in v_lines:
|
||||
pdf_y_start = page_height - y_start
|
||||
pdf_y_end = page_height - y_end
|
||||
pdf_canvas.line(x, pdf_y_start, x, pdf_y_end)
|
||||
|
||||
logger.info(f"[TABLE] Drew {len(h_lines)} horizontal + {len(v_lines)} vertical grid lines")
|
||||
|
||||
# Draw embedded images
|
||||
embedded_images = table_element.get('embedded_images', [])
|
||||
|
||||
@@ -24,6 +24,256 @@ from reportlab.platypus import Paragraph, Table, TableStyle
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Cell Box Grid Inferrer
|
||||
# ============================================================================
|
||||
|
||||
class CellBoxGridInferrer:
|
||||
"""
|
||||
Infer table grid structure from cell_boxes coordinates.
|
||||
|
||||
This class clusters cell_boxes by Y-coordinate (rows) and X-coordinate (columns)
|
||||
to determine the grid structure, regardless of HTML colspan/rowspan.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
row_threshold: float = 15.0,
|
||||
col_threshold: float = 15.0
|
||||
):
|
||||
"""
|
||||
Initialize grid inferrer.
|
||||
|
||||
Args:
|
||||
row_threshold: Y-coordinate threshold for row clustering
|
||||
col_threshold: X-coordinate threshold for column clustering
|
||||
"""
|
||||
self.row_threshold = row_threshold
|
||||
self.col_threshold = col_threshold
|
||||
|
||||
def infer_grid(
|
||||
self,
|
||||
cell_boxes: List[List[float]]
|
||||
) -> Optional[Dict]:
|
||||
"""
|
||||
Infer grid structure from cell_boxes.
|
||||
|
||||
Args:
|
||||
cell_boxes: List of [x0, y0, x1, y1] coordinates
|
||||
|
||||
Returns:
|
||||
Dict with 'grid', 'num_rows', 'num_cols', 'row_boundaries', 'col_boundaries'
|
||||
or None if inference fails
|
||||
"""
|
||||
if not cell_boxes or len(cell_boxes) < 1:
|
||||
return None
|
||||
|
||||
try:
|
||||
# Filter valid boxes
|
||||
valid_boxes = [
|
||||
b for b in cell_boxes
|
||||
if b is not None and len(b) >= 4
|
||||
]
|
||||
if not valid_boxes:
|
||||
return None
|
||||
|
||||
# Extract Y and X boundaries from all cells
|
||||
y_mins = [b[1] for b in valid_boxes] # y0
|
||||
y_maxs = [b[3] for b in valid_boxes] # y1
|
||||
x_mins = [b[0] for b in valid_boxes] # x0
|
||||
x_maxs = [b[2] for b in valid_boxes] # x1
|
||||
|
||||
# Cluster Y values to determine rows
|
||||
all_y = sorted(set(y_mins + y_maxs))
|
||||
y_boundaries = self._cluster_to_boundaries(all_y, self.row_threshold)
|
||||
|
||||
# Cluster X values to determine columns
|
||||
all_x = sorted(set(x_mins + x_maxs))
|
||||
x_boundaries = self._cluster_to_boundaries(all_x, self.col_threshold)
|
||||
|
||||
if len(y_boundaries) < 2 or len(x_boundaries) < 2:
|
||||
return None
|
||||
|
||||
num_rows = len(y_boundaries) - 1
|
||||
num_cols = len(x_boundaries) - 1
|
||||
|
||||
# Build grid: map (row, col) -> cell_box info
|
||||
grid = {}
|
||||
for idx, box in enumerate(valid_boxes):
|
||||
x0, y0, x1, y1 = box[:4]
|
||||
|
||||
# Find row by y_center
|
||||
y_center = (y0 + y1) / 2
|
||||
row = self._find_position(y_center, y_boundaries)
|
||||
|
||||
# Find col by x_center
|
||||
x_center = (x0 + x1) / 2
|
||||
col = self._find_position(x_center, x_boundaries)
|
||||
|
||||
if row is not None and col is not None:
|
||||
grid[(row, col)] = {
|
||||
'bbox': box,
|
||||
'index': idx,
|
||||
'content': ''
|
||||
}
|
||||
|
||||
# Calculate row heights and column widths
|
||||
row_heights = [
|
||||
y_boundaries[i + 1] - y_boundaries[i]
|
||||
for i in range(num_rows)
|
||||
]
|
||||
col_widths = [
|
||||
x_boundaries[i + 1] - x_boundaries[i]
|
||||
for i in range(num_cols)
|
||||
]
|
||||
|
||||
return {
|
||||
'grid': grid,
|
||||
'num_rows': num_rows,
|
||||
'num_cols': num_cols,
|
||||
'row_boundaries': y_boundaries,
|
||||
'col_boundaries': x_boundaries,
|
||||
'row_heights': row_heights,
|
||||
'col_widths': col_widths
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Grid inference failed: {e}")
|
||||
return None
|
||||
|
||||
def _cluster_to_boundaries(
|
||||
self,
|
||||
values: List[float],
|
||||
threshold: float
|
||||
) -> List[float]:
|
||||
"""
|
||||
Cluster nearby values and return representative boundaries.
|
||||
|
||||
Args:
|
||||
values: Sorted list of coordinate values
|
||||
threshold: Clustering threshold
|
||||
|
||||
Returns:
|
||||
List of boundary values (cluster representatives)
|
||||
"""
|
||||
if not values:
|
||||
return []
|
||||
|
||||
boundaries = [values[0]]
|
||||
current_cluster = [values[0]]
|
||||
|
||||
for v in values[1:]:
|
||||
if v - current_cluster[-1] <= threshold:
|
||||
current_cluster.append(v)
|
||||
else:
|
||||
# Finish current cluster, use average as boundary
|
||||
boundaries[-1] = sum(current_cluster) / len(current_cluster)
|
||||
boundaries.append(v)
|
||||
current_cluster = [v]
|
||||
|
||||
# Finish last cluster
|
||||
if current_cluster:
|
||||
boundaries[-1] = sum(current_cluster) / len(current_cluster)
|
||||
|
||||
return boundaries
|
||||
|
||||
def _find_position(
|
||||
self,
|
||||
value: float,
|
||||
boundaries: List[float]
|
||||
) -> Optional[int]:
|
||||
"""
|
||||
Find which interval a value falls into.
|
||||
|
||||
Args:
|
||||
value: Coordinate value
|
||||
boundaries: List of boundary values
|
||||
|
||||
Returns:
|
||||
Index of interval, or None if out of bounds
|
||||
"""
|
||||
for i in range(len(boundaries) - 1):
|
||||
if boundaries[i] <= value <= boundaries[i + 1]:
|
||||
return i
|
||||
|
||||
# Check if close to any boundary
|
||||
for i in range(len(boundaries) - 1):
|
||||
mid = (boundaries[i] + boundaries[i + 1]) / 2
|
||||
if abs(value - mid) < (boundaries[i + 1] - boundaries[i]):
|
||||
return i
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def extract_cell_contents_from_html(html: str) -> List[str]:
|
||||
"""
|
||||
Extract cell text contents from HTML in reading order.
|
||||
|
||||
Args:
|
||||
html: HTML table string
|
||||
|
||||
Returns:
|
||||
List of text strings, one per cell
|
||||
"""
|
||||
try:
|
||||
parser = HTMLTableParser()
|
||||
parser.feed(html)
|
||||
|
||||
if not parser.tables:
|
||||
return []
|
||||
|
||||
contents = []
|
||||
for row in parser.tables[0].get('rows', []):
|
||||
for cell in row.get('cells', []):
|
||||
text = cell.get('text', '').strip()
|
||||
contents.append(text)
|
||||
|
||||
return contents
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"HTML content extraction failed: {e}")
|
||||
return []
|
||||
|
||||
|
||||
def map_content_to_grid(
|
||||
grid: Dict[Tuple[int, int], Dict],
|
||||
contents: List[str],
|
||||
num_rows: int,
|
||||
num_cols: int
|
||||
) -> Dict[Tuple[int, int], Dict]:
|
||||
"""
|
||||
Map extracted content to grid cells row by row.
|
||||
|
||||
Args:
|
||||
grid: Dict mapping (row, col) to cell info
|
||||
contents: List of text contents from HTML
|
||||
num_rows: Number of rows in grid
|
||||
num_cols: Number of columns in grid
|
||||
|
||||
Returns:
|
||||
Updated grid with content assigned
|
||||
"""
|
||||
content_idx = 0
|
||||
|
||||
for row in range(num_rows):
|
||||
for col in range(num_cols):
|
||||
if (row, col) in grid:
|
||||
if content_idx < len(contents):
|
||||
grid[(row, col)]['content'] = contents[content_idx]
|
||||
content_idx += 1
|
||||
else:
|
||||
grid[(row, col)]['content'] = ''
|
||||
|
||||
# Log if there's a significant mismatch
|
||||
if content_idx < len(contents):
|
||||
logger.debug(
|
||||
f"Content mismatch: {len(contents)} HTML cells, "
|
||||
f"only {content_idx} mapped to {len(grid)} grid cells"
|
||||
)
|
||||
|
||||
return grid
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Configuration
|
||||
# ============================================================================
|
||||
@@ -405,6 +655,147 @@ class TableRenderer:
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
def render_from_cellboxes_grid(
|
||||
self,
|
||||
pdf_canvas,
|
||||
cell_boxes: List[List[float]],
|
||||
html_content: str,
|
||||
table_bbox: Tuple[float, float, float, float],
|
||||
page_height: float,
|
||||
scale_w: float = 1.0,
|
||||
scale_h: float = 1.0,
|
||||
row_threshold: float = 15.0,
|
||||
col_threshold: float = 15.0
|
||||
) -> bool:
|
||||
"""
|
||||
Render table using cell_boxes as the primary structure source.
|
||||
|
||||
This method infers grid structure from cell_boxes coordinates and
|
||||
maps HTML content to cells, regardless of HTML colspan/rowspan.
|
||||
|
||||
Args:
|
||||
pdf_canvas: ReportLab canvas
|
||||
cell_boxes: List of [x0, y0, x1, y1] for each cell
|
||||
html_content: HTML table string (for text content)
|
||||
table_bbox: Table bounding box
|
||||
page_height: PDF page height
|
||||
scale_w: Horizontal scale factor
|
||||
scale_h: Vertical scale factor
|
||||
row_threshold: Y-coordinate threshold for row clustering
|
||||
col_threshold: X-coordinate threshold for column clustering
|
||||
|
||||
Returns:
|
||||
True if successful, False otherwise
|
||||
"""
|
||||
try:
|
||||
if not cell_boxes:
|
||||
logger.debug("No cell_boxes provided for grid rendering")
|
||||
return False
|
||||
|
||||
# Infer grid structure from cell_boxes
|
||||
inferrer = CellBoxGridInferrer(
|
||||
row_threshold=row_threshold,
|
||||
col_threshold=col_threshold
|
||||
)
|
||||
grid_info = inferrer.infer_grid(cell_boxes)
|
||||
|
||||
if not grid_info:
|
||||
logger.debug("Failed to infer grid from cell_boxes")
|
||||
return False
|
||||
|
||||
grid = grid_info['grid']
|
||||
num_rows = grid_info['num_rows']
|
||||
num_cols = grid_info['num_cols']
|
||||
row_boundaries = grid_info['row_boundaries']
|
||||
col_boundaries = grid_info['col_boundaries']
|
||||
|
||||
logger.info(
|
||||
f"[TABLE] CellBoxes grid inferred: {num_rows} rows x {num_cols} cols "
|
||||
f"from {len(cell_boxes)} cell_boxes"
|
||||
)
|
||||
|
||||
# Extract content from HTML
|
||||
if html_content:
|
||||
contents = extract_cell_contents_from_html(html_content)
|
||||
grid = map_content_to_grid(grid, contents, num_rows, num_cols)
|
||||
logger.debug(f"[TABLE] Mapped {len(contents)} HTML cells to grid")
|
||||
|
||||
# Apply scale factors to boundaries
|
||||
scaled_row_boundaries = [y * scale_h for y in row_boundaries]
|
||||
scaled_col_boundaries = [x * scale_w for x in col_boundaries]
|
||||
|
||||
# Draw cell borders and content
|
||||
pdf_canvas.saveState()
|
||||
pdf_canvas.setStrokeColor(self.config.border_color)
|
||||
pdf_canvas.setLineWidth(self.config.border_width)
|
||||
|
||||
# Create paragraph style for text
|
||||
style = ParagraphStyle(
|
||||
'CellBoxCell',
|
||||
fontName=self.config.font_name,
|
||||
fontSize=self.config.font_size,
|
||||
alignment=TA_CENTER,
|
||||
leading=self.config.font_size * 1.2
|
||||
)
|
||||
|
||||
for row in range(num_rows):
|
||||
for col in range(num_cols):
|
||||
# Calculate cell boundaries
|
||||
x0 = scaled_col_boundaries[col]
|
||||
x1 = scaled_col_boundaries[col + 1] if col + 1 < len(scaled_col_boundaries) else x0 + 50
|
||||
y0 = scaled_row_boundaries[row]
|
||||
y1 = scaled_row_boundaries[row + 1] if row + 1 < len(scaled_row_boundaries) else y0 + 20
|
||||
|
||||
# Convert to PDF coordinates (flip Y)
|
||||
pdf_x0 = x0
|
||||
pdf_y0 = page_height - y1
|
||||
pdf_x1 = x1
|
||||
pdf_y1 = page_height - y0
|
||||
|
||||
cell_width = pdf_x1 - pdf_x0
|
||||
cell_height = pdf_y1 - pdf_y0
|
||||
|
||||
# Draw cell border
|
||||
pdf_canvas.rect(pdf_x0, pdf_y0, cell_width, cell_height)
|
||||
|
||||
# Draw text if cell exists in grid
|
||||
if (row, col) in grid:
|
||||
cell_content = grid[(row, col)].get('content', '')
|
||||
if cell_content:
|
||||
# Calculate text position with padding
|
||||
text_x = pdf_x0 + self.config.left_padding
|
||||
text_y = pdf_y0 + cell_height - self.config.top_padding - self.config.font_size
|
||||
|
||||
# Fit text to cell
|
||||
available_width = cell_width - self.config.left_padding - self.config.right_padding
|
||||
font_size = self._fit_text_to_cell(
|
||||
pdf_canvas, cell_content, available_width, cell_height
|
||||
)
|
||||
|
||||
# Draw centered text
|
||||
pdf_canvas.setFont(self.config.font_name, font_size)
|
||||
text_width = pdf_canvas.stringWidth(
|
||||
cell_content, self.config.font_name, font_size
|
||||
)
|
||||
|
||||
# Center horizontally
|
||||
text_x = pdf_x0 + (cell_width - text_width) / 2
|
||||
# Center vertically
|
||||
text_y = pdf_y0 + (cell_height - font_size) / 2
|
||||
|
||||
pdf_canvas.drawString(text_x, text_y, cell_content)
|
||||
|
||||
pdf_canvas.restoreState()
|
||||
|
||||
logger.info(f"[TABLE] Successfully rendered {num_rows}x{num_cols} table from cell_boxes")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"CellBoxes grid rendering failed: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
# =========================================================================
|
||||
# Grid and Cell Box Helpers
|
||||
# =========================================================================
|
||||
|
||||
@@ -28,9 +28,11 @@ from PIL import Image
|
||||
import numpy as np
|
||||
import cv2
|
||||
from app.models.unified_document import ElementType
|
||||
from app.services.cell_validation_engine import CellValidationEngine, CellValidationConfig
|
||||
from app.core.config import settings
|
||||
from app.services.memory_manager import prediction_context
|
||||
from app.services.cv_table_detector import CVTableDetector
|
||||
from app.services.table_content_rebuilder import TableContentRebuilder
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -91,7 +93,8 @@ class PPStructureEnhanced:
|
||||
preprocessed_image: Optional[Image.Image] = None,
|
||||
scaling_info: Optional['ScalingInfo'] = None,
|
||||
save_visualization: bool = False,
|
||||
use_cv_table_detection: bool = False
|
||||
use_cv_table_detection: bool = False,
|
||||
raw_ocr_regions: Optional[List[Dict[str, Any]]] = None
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Analyze document with full PP-StructureV3 capabilities.
|
||||
@@ -110,6 +113,8 @@ class PPStructureEnhanced:
|
||||
(layout_det_res, layout_order_res, overall_ocr_res, etc.)
|
||||
use_cv_table_detection: If True, use CV-based line detection for wired tables
|
||||
instead of ML-based cell detection (RT-DETR-L)
|
||||
raw_ocr_regions: Optional list of raw OCR text regions for table content
|
||||
rebuilding. Used when PP-StructureV3's table HTML is incorrect.
|
||||
|
||||
Returns:
|
||||
Dictionary with complete structure information including:
|
||||
@@ -222,6 +227,7 @@ class PPStructureEnhanced:
|
||||
|
||||
# Extract table_res_list which contains cell_box_list
|
||||
layout_det_res = None
|
||||
overall_ocr_res = None
|
||||
if result_dict:
|
||||
if 'table_res_list' in result_dict:
|
||||
table_res_list = result_dict['table_res_list']
|
||||
@@ -235,13 +241,20 @@ class PPStructureEnhanced:
|
||||
layout_det_res = result_dict['layout_det_res']
|
||||
logger.info(f"Found layout_det_res with {len(layout_det_res.get('boxes', []))} boxes")
|
||||
|
||||
# Extract overall_ocr_res for gap filling (avoid separate Raw OCR inference)
|
||||
if 'overall_ocr_res' in result_dict:
|
||||
overall_ocr_res = result_dict['overall_ocr_res']
|
||||
ocr_count = len(overall_ocr_res.get('rec_texts', []))
|
||||
logger.info(f"Found overall_ocr_res with {ocr_count} text regions")
|
||||
|
||||
# Process parsing_res_list if found
|
||||
if parsing_res_list:
|
||||
elements = self._process_parsing_res_list(
|
||||
parsing_res_list, current_page, output_dir, image_path, scaling_info,
|
||||
table_res_list=table_res_list, # Pass table_res_list for cell_box_list
|
||||
layout_det_res=layout_det_res, # Pass layout_det_res for Image-in-Table
|
||||
use_cv_table_detection=use_cv_table_detection # Use CV for wired tables
|
||||
use_cv_table_detection=use_cv_table_detection, # Use CV for wired tables
|
||||
raw_ocr_regions=raw_ocr_regions # Pass raw OCR for table content rebuilding
|
||||
)
|
||||
all_elements.extend(elements)
|
||||
|
||||
@@ -289,6 +302,15 @@ class PPStructureEnhanced:
|
||||
if visualization_dir:
|
||||
result['visualization_dir'] = str(visualization_dir)
|
||||
|
||||
# Add overall_ocr_res for gap filling (converted to standard format)
|
||||
# This allows gap_filling_service to use PP-StructureV3's internal OCR
|
||||
# instead of running a separate Raw OCR inference
|
||||
if overall_ocr_res:
|
||||
result['overall_ocr_res'] = self._convert_overall_ocr_to_regions(
|
||||
overall_ocr_res, scaling_info
|
||||
)
|
||||
logger.info(f"Converted {len(result['overall_ocr_res'])} OCR regions from overall_ocr_res")
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
@@ -327,7 +349,8 @@ class PPStructureEnhanced:
|
||||
scaling_info: Optional['ScalingInfo'] = None,
|
||||
table_res_list: Optional[List[Dict]] = None,
|
||||
layout_det_res: Optional[Dict] = None,
|
||||
use_cv_table_detection: bool = False
|
||||
use_cv_table_detection: bool = False,
|
||||
raw_ocr_regions: Optional[List[Dict[str, Any]]] = None
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Process parsing_res_list to extract all elements.
|
||||
@@ -341,6 +364,7 @@ class PPStructureEnhanced:
|
||||
table_res_list: Optional list of table results containing cell_box_list
|
||||
layout_det_res: Optional layout detection result for Image-in-Table processing
|
||||
use_cv_table_detection: If True, use CV line detection for wired tables
|
||||
raw_ocr_regions: Optional list of raw OCR text regions for table content rebuilding
|
||||
|
||||
Returns:
|
||||
List of processed elements with normalized structure
|
||||
@@ -415,6 +439,11 @@ class PPStructureEnhanced:
|
||||
mapped_type = ElementType.TABLE
|
||||
html_table_content = content # Store for later use
|
||||
|
||||
# Strip LaTeX math formatting from text content (PP-Structure formula detection)
|
||||
if content and mapped_type in [ElementType.TEXT, ElementType.TITLE, ElementType.HEADER]:
|
||||
if '$' in content and '\\' in content:
|
||||
content = self._strip_latex_math(content)
|
||||
|
||||
# Create element
|
||||
element = {
|
||||
'element_id': f"pp3_{current_page}_{idx}",
|
||||
@@ -468,18 +497,84 @@ class PPStructureEnhanced:
|
||||
logger.info(f"[TABLE] Found {len(cell_boxes)} cell boxes from table_res_list (HTML match)")
|
||||
break
|
||||
|
||||
# If no HTML match, use first available table_res with cell_box_list
|
||||
# If no HTML match, find best matching table_res by bbox overlap
|
||||
if not cell_boxes_extracted:
|
||||
best_match = None
|
||||
best_overlap = 0.0
|
||||
|
||||
for tbl_res in table_res_list:
|
||||
if 'cell_box_list' in tbl_res and tbl_res['cell_box_list']:
|
||||
cell_boxes = tbl_res['cell_box_list']
|
||||
element['cell_boxes'] = [[float(c) for c in box] for box in cell_boxes]
|
||||
element['cell_boxes_source'] = 'table_res_list'
|
||||
cell_boxes_extracted = True
|
||||
logger.info(f"[TABLE] Found {len(cell_boxes)} cell boxes from table_res_list (first available)")
|
||||
# Remove used table_res to avoid reuse
|
||||
table_res_list.remove(tbl_res)
|
||||
break
|
||||
if 'cell_box_list' not in tbl_res or not tbl_res['cell_box_list']:
|
||||
continue
|
||||
|
||||
# Get table_res bbox from its cell_box_list
|
||||
cell_boxes_temp = tbl_res['cell_box_list']
|
||||
if not cell_boxes_temp:
|
||||
continue
|
||||
|
||||
# Calculate bounding box of all cells
|
||||
tbl_x1 = min(cb[0] for cb in cell_boxes_temp)
|
||||
tbl_y1 = min(cb[1] for cb in cell_boxes_temp)
|
||||
tbl_x2 = max(cb[2] for cb in cell_boxes_temp)
|
||||
tbl_y2 = max(cb[3] for cb in cell_boxes_temp)
|
||||
|
||||
# Calculate IoU (Intersection over Union) with element bbox
|
||||
# bbox is [x1, y1, x2, y2]
|
||||
elem_x1, elem_y1, elem_x2, elem_y2 = bbox[0], bbox[1], bbox[2], bbox[3]
|
||||
|
||||
# Intersection
|
||||
inter_x1 = max(tbl_x1, elem_x1)
|
||||
inter_y1 = max(tbl_y1, elem_y1)
|
||||
inter_x2 = min(tbl_x2, elem_x2)
|
||||
inter_y2 = min(tbl_y2, elem_y2)
|
||||
|
||||
if inter_x1 < inter_x2 and inter_y1 < inter_y2:
|
||||
inter_area = (inter_x2 - inter_x1) * (inter_y2 - inter_y1)
|
||||
elem_area = (elem_x2 - elem_x1) * (elem_y2 - elem_y1)
|
||||
tbl_area = (tbl_x2 - tbl_x1) * (tbl_y2 - tbl_y1)
|
||||
|
||||
# Use overlap ratio with element bbox (how much of element is covered)
|
||||
overlap_ratio = inter_area / elem_area if elem_area > 0 else 0
|
||||
|
||||
if overlap_ratio > best_overlap:
|
||||
best_overlap = overlap_ratio
|
||||
best_match = tbl_res
|
||||
|
||||
# Use best match if overlap is significant (>10%)
|
||||
if best_match and best_overlap > 0.1:
|
||||
cell_boxes = best_match['cell_box_list']
|
||||
element['cell_boxes'] = [[float(c) for c in box] for box in cell_boxes]
|
||||
element['cell_boxes_source'] = 'table_res_list'
|
||||
cell_boxes_extracted = True
|
||||
logger.info(f"[TABLE] Found {len(cell_boxes)} cell boxes from table_res_list (bbox match, overlap={best_overlap:.2f})")
|
||||
|
||||
# Extract pred_html if not already set
|
||||
if not html_content and 'pred_html' in best_match:
|
||||
html_content = best_match['pred_html']
|
||||
element['html'] = html_content
|
||||
element['extracted_text'] = self._extract_text_from_html(html_content)
|
||||
logger.info(f"[TABLE] Extracted HTML from table_res_list (bbox match, {len(html_content)} chars)")
|
||||
|
||||
# Remove used table_res to avoid reuse
|
||||
table_res_list.remove(best_match)
|
||||
elif table_res_list:
|
||||
# Fallback to first available if no bbox match found
|
||||
for tbl_res in table_res_list:
|
||||
if 'cell_box_list' in tbl_res and tbl_res['cell_box_list']:
|
||||
cell_boxes = tbl_res['cell_box_list']
|
||||
element['cell_boxes'] = [[float(c) for c in box] for box in cell_boxes]
|
||||
element['cell_boxes_source'] = 'table_res_list'
|
||||
cell_boxes_extracted = True
|
||||
logger.warning(f"[TABLE] Using first available table_res (no bbox match, {len(cell_boxes)} cells)")
|
||||
|
||||
# Extract pred_html if not already set
|
||||
if not html_content and 'pred_html' in tbl_res:
|
||||
html_content = tbl_res['pred_html']
|
||||
element['html'] = html_content
|
||||
element['extracted_text'] = self._extract_text_from_html(html_content)
|
||||
logger.info(f"[TABLE] Extracted HTML from table_res_list (fallback, {len(html_content)} chars)")
|
||||
|
||||
table_res_list.remove(tbl_res)
|
||||
break
|
||||
|
||||
if not cell_boxes_extracted and 'boxes' in res_data:
|
||||
# PPStructureV3 returned cell boxes in res (unlikely in PaddleX 3.x)
|
||||
@@ -558,6 +653,42 @@ class PPStructureEnhanced:
|
||||
element['embedded_images'] = embedded_images
|
||||
logger.info(f"[TABLE] Embedded {len(embedded_images)} images into table")
|
||||
|
||||
# 4. Table content rebuilding from raw OCR regions
|
||||
# When cell_boxes have boundary issues, rebuild table content from raw OCR
|
||||
# Only if table_content_rebuilder is enabled (disabled by default as it's a patch behavior)
|
||||
logger.info(f"[TABLE] raw_ocr_regions available: {raw_ocr_regions is not None and len(raw_ocr_regions) if raw_ocr_regions else 0}")
|
||||
logger.info(f"[TABLE] cell_boxes available: {len(element.get('cell_boxes', []))}")
|
||||
if settings.table_content_rebuilder_enabled and raw_ocr_regions and element.get('cell_boxes'):
|
||||
rebuilder = TableContentRebuilder()
|
||||
should_rebuild, rebuild_reason = rebuilder.should_rebuild(
|
||||
element['cell_boxes'],
|
||||
bbox,
|
||||
element.get('html', '')
|
||||
)
|
||||
|
||||
if should_rebuild:
|
||||
logger.info(f"[TABLE] Triggering table rebuild: {rebuild_reason}")
|
||||
rebuilt_table, rebuild_stats = rebuilder.rebuild_table(
|
||||
cell_boxes=element['cell_boxes'],
|
||||
table_bbox=bbox,
|
||||
raw_ocr_regions=raw_ocr_regions,
|
||||
original_html=element.get('html', '')
|
||||
)
|
||||
|
||||
if rebuilt_table:
|
||||
# Update element with rebuilt content
|
||||
element['html'] = rebuilt_table['html']
|
||||
element['rebuilt_table'] = rebuilt_table
|
||||
element['rebuild_stats'] = rebuild_stats
|
||||
element['extracted_text'] = self._extract_text_from_html(rebuilt_table['html'])
|
||||
logger.info(
|
||||
f"[TABLE] Rebuilt table: {rebuilt_table['rows']}x{rebuilt_table['cols']} "
|
||||
f"with {len(rebuilt_table['cells'])} cells"
|
||||
)
|
||||
else:
|
||||
logger.warning(f"[TABLE] Rebuild failed: {rebuild_stats.get('reason', 'unknown')}")
|
||||
element['rebuild_stats'] = rebuild_stats
|
||||
|
||||
# Special handling for images/figures/charts/stamps (visual elements that need cropping)
|
||||
elif mapped_type in [ElementType.IMAGE, ElementType.FIGURE, ElementType.CHART, ElementType.DIAGRAM, ElementType.STAMP, ElementType.LOGO]:
|
||||
# Save image if path provided
|
||||
@@ -587,6 +718,21 @@ class PPStructureEnhanced:
|
||||
elements.append(element)
|
||||
logger.debug(f"Processed element {idx}: type={mapped_type}, bbox={bbox}")
|
||||
|
||||
# Apply cell validation to filter over-detected tables
|
||||
if settings.cell_validation_enabled:
|
||||
cell_validator = CellValidationEngine(CellValidationConfig(
|
||||
max_cell_density=settings.cell_validation_max_density,
|
||||
min_avg_cell_area=settings.cell_validation_min_cell_area,
|
||||
min_cell_height=settings.cell_validation_min_cell_height,
|
||||
enabled=True
|
||||
))
|
||||
elements, validation_stats = cell_validator.validate_and_filter_elements(elements)
|
||||
if validation_stats['reclassified_tables'] > 0:
|
||||
logger.info(
|
||||
f"Cell validation: {validation_stats['reclassified_tables']}/{validation_stats['total_tables']} "
|
||||
f"tables reclassified as TEXT due to over-detection"
|
||||
)
|
||||
|
||||
return elements
|
||||
|
||||
def _embed_images_in_table(
|
||||
@@ -911,18 +1057,145 @@ class PPStructureEnhanced:
|
||||
type_counts[elem_type] = type_counts.get(elem_type, 0) + 1
|
||||
return type_counts
|
||||
|
||||
def _convert_overall_ocr_to_regions(
|
||||
self,
|
||||
overall_ocr_res: Dict[str, Any],
|
||||
scaling_info: Optional['ScalingInfo'] = None
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Convert PP-StructureV3's overall_ocr_res to standard OCR region format.
|
||||
|
||||
This allows gap_filling_service to use PP-StructureV3's internal OCR results
|
||||
instead of running a separate Raw OCR inference, saving approximately 50%
|
||||
of total inference time.
|
||||
|
||||
The overall_ocr_res structure:
|
||||
- dt_polys: List of polygon coordinates [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
|
||||
- rec_texts: List of recognized text strings
|
||||
- rec_scores: List of confidence scores
|
||||
|
||||
Args:
|
||||
overall_ocr_res: Dictionary containing OCR results from PP-StructureV3
|
||||
scaling_info: Optional scaling info for coordinate restoration
|
||||
|
||||
Returns:
|
||||
List of OCR region dictionaries in standard format:
|
||||
[{'text': str, 'bbox': [[x1,y1],...], 'confidence': float}, ...]
|
||||
"""
|
||||
regions = []
|
||||
|
||||
dt_polys = overall_ocr_res.get('dt_polys', [])
|
||||
rec_texts = overall_ocr_res.get('rec_texts', [])
|
||||
rec_scores = overall_ocr_res.get('rec_scores', [])
|
||||
|
||||
# Ensure all lists have the same length
|
||||
num_regions = min(len(dt_polys), len(rec_texts))
|
||||
if len(rec_scores) < num_regions:
|
||||
# Pad with default confidence if scores are missing
|
||||
rec_scores = list(rec_scores) + [0.9] * (num_regions - len(rec_scores))
|
||||
|
||||
for i in range(num_regions):
|
||||
text = rec_texts[i]
|
||||
if not text or not text.strip():
|
||||
continue
|
||||
|
||||
poly = dt_polys[i]
|
||||
confidence = rec_scores[i] if i < len(rec_scores) else 0.9
|
||||
|
||||
# Apply scaling restoration if needed
|
||||
if scaling_info and hasattr(scaling_info, 'scale_factor') and scaling_info.scale_factor != 1.0:
|
||||
scale = scaling_info.scale_factor
|
||||
poly = [[pt[0] / scale, pt[1] / scale] for pt in poly]
|
||||
|
||||
regions.append({
|
||||
'text': text,
|
||||
'bbox': poly, # Keep polygon format for compatibility
|
||||
'confidence': confidence
|
||||
})
|
||||
|
||||
return regions
|
||||
|
||||
def _extract_text_from_html(self, html: str) -> str:
|
||||
"""Extract plain text from HTML content."""
|
||||
try:
|
||||
from bs4 import BeautifulSoup
|
||||
soup = BeautifulSoup(html, 'html.parser')
|
||||
return soup.get_text(separator=' ', strip=True)
|
||||
text = soup.get_text(separator=' ', strip=True)
|
||||
except:
|
||||
# Fallback: just remove HTML tags
|
||||
import re
|
||||
text = re.sub(r'<[^>]+>', ' ', html)
|
||||
text = re.sub(r'\s+', ' ', text)
|
||||
return text.strip()
|
||||
text = text.strip()
|
||||
|
||||
# Strip LaTeX math formatting if present
|
||||
return self._strip_latex_math(text)
|
||||
|
||||
def _strip_latex_math(self, text: str) -> str:
|
||||
"""
|
||||
Convert LaTeX math notation to plain text.
|
||||
|
||||
PP-StructureV3 outputs formulas in LaTeX format like:
|
||||
$N\\cdot m\\times8.851=|b\\cdot|$
|
||||
|
||||
This converts them to readable plain text.
|
||||
"""
|
||||
import re
|
||||
|
||||
if not text or '$' not in text:
|
||||
return text
|
||||
|
||||
# Remove $...$ delimiters but keep content
|
||||
text = re.sub(r'\$([^$]+)\$', r'\1', text)
|
||||
|
||||
# Convert common LaTeX math commands to plain text
|
||||
replacements = [
|
||||
(r'\\cdot', '·'), # Multiplication dot
|
||||
(r'\\times', '×'), # Multiplication sign
|
||||
(r'\\div', '÷'), # Division sign
|
||||
(r'\\pm', '±'), # Plus-minus
|
||||
(r'\\leq', '≤'), # Less than or equal
|
||||
(r'\\geq', '≥'), # Greater than or equal
|
||||
(r'\\neq', '≠'), # Not equal
|
||||
(r'\\approx', '≈'), # Approximately equal
|
||||
(r'\\circ', '°'), # Degree symbol
|
||||
(r'\\degree', '°'), # Degree symbol
|
||||
(r'\\alpha', 'α'),
|
||||
(r'\\beta', 'β'),
|
||||
(r'\\gamma', 'γ'),
|
||||
(r'\\delta', 'δ'),
|
||||
(r'\\mu', 'μ'),
|
||||
(r'\\Omega', 'Ω'),
|
||||
(r'\\infty', '∞'),
|
||||
(r'\^\\{2\\}', '²'), # Superscript 2
|
||||
(r'\^\\{3\\}', '³'), # Superscript 3
|
||||
(r'\^2', '²'),
|
||||
(r'\^3', '³'),
|
||||
(r'_\\{([^}]+)\\}', r'_\1'), # Subscript
|
||||
(r'\\mathrm\{([^}]+)\}', r'\1'), # Roman text
|
||||
(r'\\mathsf\{([^}]+)\}', r'\1'), # Sans-serif text
|
||||
(r'\\mathbf\{([^}]+)\}', r'\1'), # Bold text
|
||||
(r'\\text\{([^}]+)\}', r'\1'), # Text mode
|
||||
(r'\\left', ''),
|
||||
(r'\\right', ''),
|
||||
(r'\\[|]', '|'), # Pipe symbols
|
||||
(r'\\ ', ' '), # Escaped space
|
||||
(r'\\,', ' '), # Thin space
|
||||
(r'\\;', ' '), # Medium space
|
||||
(r'\\quad', ' '), # Quad space
|
||||
(r'\\qquad', ' '), # Double quad space
|
||||
]
|
||||
|
||||
for pattern, replacement in replacements:
|
||||
text = re.sub(pattern, replacement, text)
|
||||
|
||||
# Clean up any remaining backslashes followed by letters (unknown commands)
|
||||
text = re.sub(r'\\[a-zA-Z]+', '', text)
|
||||
|
||||
# Clean up multiple spaces
|
||||
text = re.sub(r'\s+', ' ', text)
|
||||
|
||||
return text.strip()
|
||||
|
||||
def _extract_bbox_from_filename(self, filename: str) -> List[int]:
|
||||
"""Extract bbox from filename if it contains coordinate information."""
|
||||
|
||||
@@ -335,6 +335,14 @@ class OCRPipeline(ProcessingPipeline):
|
||||
|
||||
processing_time = time.time() - start_time
|
||||
|
||||
# Debug: Check if ocr_result has rebuild_stats
|
||||
if 'enhanced_results' in ocr_result:
|
||||
for page_result in ocr_result['enhanced_results']:
|
||||
for elem in page_result.get('elements', []):
|
||||
if elem.get('type') == 'table' or (hasattr(elem.get('type'), 'value') and elem.get('type').value == 'table'):
|
||||
has_rebuild = 'rebuild_stats' in elem
|
||||
logger.info(f"[ORCHESTRATOR] Before converter - Table {elem.get('element_id')}: has rebuild_stats={has_rebuild}")
|
||||
|
||||
# Convert to UnifiedDocument
|
||||
unified_doc = self.converter.convert(
|
||||
ocr_result,
|
||||
|
||||
790
backend/app/services/table_column_corrector.py
Normal file
790
backend/app/services/table_column_corrector.py
Normal file
@@ -0,0 +1,790 @@
|
||||
"""
|
||||
Table Column Alignment Corrector
|
||||
|
||||
This module provides post-processing correction for PP-Structure's table
|
||||
structure recognition, which frequently outputs cells with incorrect column
|
||||
indices (column shift).
|
||||
|
||||
The correction uses a "Header-Anchor Alignment" strategy:
|
||||
1. Extract header row (row_idx=0) column X-coordinate ranges as anchors
|
||||
2. Validate each cell's column assignment against header X-ranges
|
||||
3. Correct column index if cell X-overlap with assigned column is insufficient
|
||||
|
||||
Additionally supports "Vertical Fragment Merging" for Chinese vertical text
|
||||
that gets split into multiple narrow text blocks.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
from html.parser import HTMLParser
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class BBox:
|
||||
"""Bounding box with x0, y0, x1, y1 coordinates."""
|
||||
x0: float
|
||||
y0: float
|
||||
x1: float
|
||||
y1: float
|
||||
|
||||
@property
|
||||
def width(self) -> float:
|
||||
return self.x1 - self.x0
|
||||
|
||||
@property
|
||||
def height(self) -> float:
|
||||
return self.y1 - self.y0
|
||||
|
||||
@property
|
||||
def center_x(self) -> float:
|
||||
return (self.x0 + self.x1) / 2
|
||||
|
||||
@property
|
||||
def center_y(self) -> float:
|
||||
return (self.y0 + self.y1) / 2
|
||||
|
||||
@classmethod
|
||||
def from_list(cls, coords: List[float]) -> 'BBox':
|
||||
"""Create BBox from [x0, y0, x1, y1] list."""
|
||||
if len(coords) >= 4:
|
||||
return cls(coords[0], coords[1], coords[2], coords[3])
|
||||
raise ValueError(f"Invalid bbox coords: {coords}")
|
||||
|
||||
|
||||
@dataclass
|
||||
class ColumnAnchor:
|
||||
"""Represents a column's X-coordinate range from header row."""
|
||||
col_idx: int
|
||||
x_min: float
|
||||
x_max: float
|
||||
colspan: int = 1
|
||||
|
||||
@property
|
||||
def center_x(self) -> float:
|
||||
return (self.x_min + self.x_max) / 2
|
||||
|
||||
|
||||
@dataclass
|
||||
class TableCell:
|
||||
"""Represents a cell extracted from HTML with position info."""
|
||||
row_idx: int
|
||||
col_idx: int
|
||||
content: str
|
||||
colspan: int = 1
|
||||
rowspan: int = 1
|
||||
bbox: Optional[BBox] = None
|
||||
is_header: bool = False
|
||||
|
||||
|
||||
@dataclass
|
||||
class TextBlock:
|
||||
"""Represents a text block that may need merging."""
|
||||
text: str
|
||||
bbox: BBox
|
||||
|
||||
@property
|
||||
def aspect_ratio(self) -> float:
|
||||
"""Width / Height ratio. Vertical text has low aspect ratio."""
|
||||
if self.bbox.height == 0:
|
||||
return float('inf')
|
||||
return self.bbox.width / self.bbox.height
|
||||
|
||||
|
||||
class TableHTMLParser(HTMLParser):
|
||||
"""
|
||||
Parse table HTML to extract cells with row/col indices and spans.
|
||||
PP-Structure outputs HTML like:
|
||||
<table><tr><td>content</td><td colspan="2">merged</td></tr></table>
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.cells: List[TableCell] = []
|
||||
self.current_row_idx = -1
|
||||
self.current_col_idx = 0
|
||||
self.current_cell: Optional[TableCell] = None
|
||||
self.in_table = False
|
||||
# Track occupied cells for colspan/rowspan handling
|
||||
self.occupied: Dict[Tuple[int, int], bool] = {}
|
||||
|
||||
def handle_starttag(self, tag: str, attrs: List[Tuple[str, Optional[str]]]):
|
||||
attrs_dict = dict(attrs)
|
||||
|
||||
if tag == 'table':
|
||||
self.in_table = True
|
||||
self.current_row_idx = -1
|
||||
self.occupied = {}
|
||||
|
||||
elif tag == 'tr' and self.in_table:
|
||||
self.current_row_idx += 1
|
||||
self.current_col_idx = 0
|
||||
# Skip occupied columns from previous rowspans
|
||||
while (self.current_row_idx, self.current_col_idx) in self.occupied:
|
||||
self.current_col_idx += 1
|
||||
|
||||
elif tag in ('td', 'th') and self.in_table:
|
||||
# Skip occupied columns
|
||||
while (self.current_row_idx, self.current_col_idx) in self.occupied:
|
||||
self.current_col_idx += 1
|
||||
|
||||
colspan = int(attrs_dict.get('colspan', 1))
|
||||
rowspan = int(attrs_dict.get('rowspan', 1))
|
||||
|
||||
self.current_cell = TableCell(
|
||||
row_idx=self.current_row_idx,
|
||||
col_idx=self.current_col_idx,
|
||||
content='',
|
||||
colspan=colspan,
|
||||
rowspan=rowspan,
|
||||
is_header=(tag == 'th')
|
||||
)
|
||||
|
||||
# Mark occupied cells for spans
|
||||
for r in range(rowspan):
|
||||
for c in range(colspan):
|
||||
self.occupied[(self.current_row_idx + r, self.current_col_idx + c)] = True
|
||||
|
||||
def handle_endtag(self, tag: str):
|
||||
if tag == 'table':
|
||||
self.in_table = False
|
||||
|
||||
elif tag in ('td', 'th') and self.current_cell is not None:
|
||||
self.current_cell.content = self.current_cell.content.strip()
|
||||
self.cells.append(self.current_cell)
|
||||
self.current_col_idx += self.current_cell.colspan
|
||||
self.current_cell = None
|
||||
|
||||
def handle_data(self, data: str):
|
||||
if self.current_cell is not None:
|
||||
self.current_cell.content += data
|
||||
|
||||
|
||||
def calculate_x_overlap(cell_bbox: BBox, anchor: ColumnAnchor) -> float:
|
||||
"""
|
||||
Calculate the X-axis overlap ratio between a cell and a column anchor.
|
||||
|
||||
Returns:
|
||||
Overlap ratio (0.0 to 1.0) relative to the cell's width.
|
||||
1.0 means the cell is fully within the anchor's X range.
|
||||
"""
|
||||
if cell_bbox.width == 0:
|
||||
return 0.0
|
||||
|
||||
overlap_start = max(cell_bbox.x0, anchor.x_min)
|
||||
overlap_end = min(cell_bbox.x1, anchor.x_max)
|
||||
overlap_width = max(0, overlap_end - overlap_start)
|
||||
|
||||
return overlap_width / cell_bbox.width
|
||||
|
||||
|
||||
def calculate_iou(bbox1: BBox, bbox2: BBox) -> float:
|
||||
"""Calculate Intersection over Union between two bounding boxes."""
|
||||
# Intersection
|
||||
x0 = max(bbox1.x0, bbox2.x0)
|
||||
y0 = max(bbox1.y0, bbox2.y0)
|
||||
x1 = min(bbox1.x1, bbox2.x1)
|
||||
y1 = min(bbox1.y1, bbox2.y1)
|
||||
|
||||
if x1 <= x0 or y1 <= y0:
|
||||
return 0.0
|
||||
|
||||
intersection = (x1 - x0) * (y1 - y0)
|
||||
|
||||
# Union
|
||||
area1 = bbox1.width * bbox1.height
|
||||
area2 = bbox2.width * bbox2.height
|
||||
union = area1 + area2 - intersection
|
||||
|
||||
if union == 0:
|
||||
return 0.0
|
||||
|
||||
return intersection / union
|
||||
|
||||
|
||||
def parse_table_html(html: str) -> List[TableCell]:
|
||||
"""
|
||||
Parse table HTML and extract cells with row/col indices.
|
||||
|
||||
Args:
|
||||
html: Table HTML string from PP-Structure
|
||||
|
||||
Returns:
|
||||
List of TableCell objects with position and content
|
||||
"""
|
||||
parser = TableHTMLParser()
|
||||
try:
|
||||
parser.feed(html)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to parse table HTML: {e}")
|
||||
return []
|
||||
return parser.cells
|
||||
|
||||
|
||||
def find_header_row(cells: List[TableCell], min_columns: int = 3) -> Optional[int]:
|
||||
"""
|
||||
Find the best row to use as header anchor.
|
||||
|
||||
Strategy: Find the first row with at least min_columns individual cells
|
||||
(cells without colspan > 1). This avoids using merged title rows as headers.
|
||||
|
||||
Args:
|
||||
cells: All parsed cells
|
||||
min_columns: Minimum number of individual columns required
|
||||
|
||||
Returns:
|
||||
Row index of the best header row, or None if not found
|
||||
"""
|
||||
# Group cells by row
|
||||
rows: Dict[int, List[TableCell]] = {}
|
||||
for cell in cells:
|
||||
if cell.row_idx not in rows:
|
||||
rows[cell.row_idx] = []
|
||||
rows[cell.row_idx].append(cell)
|
||||
|
||||
# Find first row with enough individual columns (no colspan)
|
||||
for row_idx in sorted(rows.keys()):
|
||||
row_cells = rows[row_idx]
|
||||
individual_cells = [c for c in row_cells if c.colspan == 1]
|
||||
if len(individual_cells) >= min_columns:
|
||||
logger.debug(f"[COLUMN CORRECTION] Found header row {row_idx} with {len(individual_cells)} individual columns")
|
||||
return row_idx
|
||||
|
||||
# Fallback: find row with most individual cells
|
||||
best_row = None
|
||||
best_count = 0
|
||||
for row_idx, row_cells in rows.items():
|
||||
individual_count = len([c for c in row_cells if c.colspan == 1])
|
||||
if individual_count > best_count:
|
||||
best_count = individual_count
|
||||
best_row = row_idx
|
||||
|
||||
if best_row is not None and best_count >= 2:
|
||||
logger.debug(f"[COLUMN CORRECTION] Using fallback header row {best_row} with {best_count} columns")
|
||||
return best_row
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def build_column_anchors(
|
||||
header_cells: List[TableCell],
|
||||
cell_boxes: List[List[float]],
|
||||
all_cells: Optional[List[TableCell]] = None
|
||||
) -> List[ColumnAnchor]:
|
||||
"""
|
||||
Build column anchors from header row cells matched with cell_boxes.
|
||||
|
||||
The header row is used as the authoritative reference for column X-coordinate
|
||||
ranges. For tables with merged title rows, we find the first row with
|
||||
multiple individual columns.
|
||||
|
||||
Args:
|
||||
header_cells: Cells from the identified header row
|
||||
cell_boxes: List of [x0, y0, x1, y1] coordinates from PP-Structure
|
||||
all_cells: All cells for finding actual header row (optional)
|
||||
|
||||
Returns:
|
||||
List of ColumnAnchor sorted by x_min
|
||||
"""
|
||||
if not header_cells or not cell_boxes:
|
||||
return []
|
||||
|
||||
# If header row has too many merged cells, try to find a better header row
|
||||
individual_cells = [c for c in header_cells if c.colspan == 1]
|
||||
if len(individual_cells) < 3 and all_cells:
|
||||
header_row_idx = find_header_row(all_cells, min_columns=3)
|
||||
if header_row_idx is not None:
|
||||
header_cells = [c for c in all_cells if c.row_idx == header_row_idx]
|
||||
individual_cells = [c for c in header_cells if c.colspan == 1]
|
||||
logger.info(f"[COLUMN CORRECTION] Switched to row {header_row_idx} as header ({len(individual_cells)} columns)")
|
||||
|
||||
# Only use individual cells (no colspan) for accurate column boundaries
|
||||
if individual_cells:
|
||||
header_cells = individual_cells
|
||||
|
||||
# Convert cell_boxes to BBox objects
|
||||
boxes = []
|
||||
for coords in cell_boxes:
|
||||
try:
|
||||
boxes.append(BBox.from_list(coords))
|
||||
except (ValueError, IndexError):
|
||||
continue
|
||||
|
||||
if not boxes:
|
||||
return []
|
||||
|
||||
# Group boxes by approximate Y position to find the header row's boxes
|
||||
# Sort all boxes by Y first
|
||||
boxes_by_y = sorted(boxes, key=lambda b: b.y0)
|
||||
|
||||
# Find the Y range of the header cells (need to estimate based on row index)
|
||||
header_row_idx = header_cells[0].row_idx if header_cells else 0
|
||||
|
||||
# Group boxes into rows by Y clustering
|
||||
row_groups: List[List[BBox]] = []
|
||||
current_group: List[BBox] = []
|
||||
current_y = None
|
||||
y_threshold = 40 # pixels tolerance for same row
|
||||
|
||||
for box in boxes_by_y:
|
||||
if current_y is None:
|
||||
current_group.append(box)
|
||||
current_y = box.center_y
|
||||
elif abs(box.center_y - current_y) < y_threshold:
|
||||
current_group.append(box)
|
||||
current_y = (current_y * len(current_group) + box.center_y) / (len(current_group) + 1)
|
||||
else:
|
||||
if current_group:
|
||||
row_groups.append(sorted(current_group, key=lambda b: b.x0))
|
||||
current_group = [box]
|
||||
current_y = box.center_y
|
||||
|
||||
if current_group:
|
||||
row_groups.append(sorted(current_group, key=lambda b: b.x0))
|
||||
|
||||
# Find the row group that best matches the header row
|
||||
# Look for a row with similar number of boxes as header cells
|
||||
target_count = len(header_cells)
|
||||
best_row_group = None
|
||||
best_diff = float('inf')
|
||||
|
||||
for group in row_groups:
|
||||
diff = abs(len(group) - target_count)
|
||||
if diff < best_diff:
|
||||
best_diff = diff
|
||||
best_row_group = group
|
||||
|
||||
if not best_row_group:
|
||||
logger.warning("[COLUMN CORRECTION] Could not find matching cell_boxes row for header")
|
||||
return []
|
||||
|
||||
logger.debug(f"[COLUMN CORRECTION] Matched header row with {len(best_row_group)} cell_boxes")
|
||||
|
||||
# Sort header cells by col_idx and match with boxes in X-order
|
||||
header_sorted = sorted(header_cells, key=lambda c: c.col_idx)
|
||||
boxes_sorted = best_row_group # Already sorted by x0
|
||||
|
||||
anchors = []
|
||||
for i, cell in enumerate(header_sorted):
|
||||
if i < len(boxes_sorted):
|
||||
box = boxes_sorted[i]
|
||||
anchors.append(ColumnAnchor(
|
||||
col_idx=cell.col_idx,
|
||||
x_min=box.x0,
|
||||
x_max=box.x1,
|
||||
colspan=cell.colspan
|
||||
))
|
||||
|
||||
return sorted(anchors, key=lambda a: a.x_min)
|
||||
|
||||
|
||||
def match_cell_to_cellbox(
|
||||
cell: TableCell,
|
||||
cell_boxes: List[BBox],
|
||||
row_cells: List[TableCell]
|
||||
) -> Optional[BBox]:
|
||||
"""
|
||||
Match a table cell to its corresponding cell_box using position heuristics.
|
||||
|
||||
Strategy:
|
||||
1. For header row, use X-order matching
|
||||
2. For other rows, use IoU if we have inferred bbox
|
||||
3. Fall back to position-based matching within row
|
||||
|
||||
Args:
|
||||
cell: The cell to match
|
||||
cell_boxes: All cell_boxes for this table
|
||||
row_cells: All cells in the same row (for position context)
|
||||
|
||||
Returns:
|
||||
Matched BBox or None if no match found
|
||||
"""
|
||||
if not cell_boxes:
|
||||
return None
|
||||
|
||||
# Sort cell_boxes by Y first, then X
|
||||
sorted_boxes = sorted(cell_boxes, key=lambda b: (b.y0, b.x0))
|
||||
|
||||
# Group boxes by approximate Y position (same row)
|
||||
row_groups: List[List[BBox]] = []
|
||||
current_group: List[BBox] = []
|
||||
current_y = None
|
||||
|
||||
for box in sorted_boxes:
|
||||
if current_y is None or abs(box.center_y - current_y) < 30: # 30px tolerance
|
||||
current_group.append(box)
|
||||
if current_y is None:
|
||||
current_y = box.center_y
|
||||
else:
|
||||
current_y = (current_y + box.center_y) / 2
|
||||
else:
|
||||
if current_group:
|
||||
row_groups.append(sorted(current_group, key=lambda b: b.x0))
|
||||
current_group = [box]
|
||||
current_y = box.center_y
|
||||
|
||||
if current_group:
|
||||
row_groups.append(sorted(current_group, key=lambda b: b.x0))
|
||||
|
||||
# Find the row that best matches cell.row_idx
|
||||
if cell.row_idx < len(row_groups):
|
||||
row_boxes = row_groups[cell.row_idx]
|
||||
# Sort cells in this row by col_idx
|
||||
row_cells_sorted = sorted(row_cells, key=lambda c: c.col_idx)
|
||||
cell_position = row_cells_sorted.index(cell) if cell in row_cells_sorted else -1
|
||||
|
||||
if 0 <= cell_position < len(row_boxes):
|
||||
return row_boxes[cell_position]
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def correct_cell_column(
|
||||
cell: TableCell,
|
||||
anchors: List[ColumnAnchor],
|
||||
threshold: float = 0.5
|
||||
) -> int:
|
||||
"""
|
||||
Determine the correct column index for a cell based on X-coordinate overlap.
|
||||
|
||||
Args:
|
||||
cell: The cell to check
|
||||
anchors: Column anchors from header row
|
||||
threshold: Minimum overlap ratio to trigger correction
|
||||
|
||||
Returns:
|
||||
Corrected column index (may be same as original)
|
||||
"""
|
||||
if not cell.bbox or not anchors:
|
||||
return cell.col_idx
|
||||
|
||||
# Find the anchor with best X-overlap
|
||||
best_anchor = None
|
||||
best_overlap = 0.0
|
||||
|
||||
for anchor in anchors:
|
||||
overlap = calculate_x_overlap(cell.bbox, anchor)
|
||||
if overlap > best_overlap:
|
||||
best_overlap = overlap
|
||||
best_anchor = anchor
|
||||
|
||||
# If we found a significantly better column, use it
|
||||
if best_anchor and best_overlap >= threshold:
|
||||
if best_anchor.col_idx != cell.col_idx:
|
||||
logger.info(
|
||||
f"[COLUMN CORRECTION] Row {cell.row_idx}: "
|
||||
f"'{cell.content[:20]}...' col {cell.col_idx} -> {best_anchor.col_idx} "
|
||||
f"(overlap: {best_overlap:.1%})"
|
||||
)
|
||||
return best_anchor.col_idx
|
||||
|
||||
# If no good overlap, try nearest by center point
|
||||
if best_overlap < 0.1:
|
||||
cell_center = cell.bbox.center_x
|
||||
nearest_anchor = min(anchors, key=lambda a: abs(a.center_x - cell_center))
|
||||
if nearest_anchor.col_idx != cell.col_idx:
|
||||
logger.info(
|
||||
f"[COLUMN CORRECTION] Row {cell.row_idx}: "
|
||||
f"'{cell.content[:20]}...' col {cell.col_idx} -> {nearest_anchor.col_idx} "
|
||||
f"(nearest by center)"
|
||||
)
|
||||
return nearest_anchor.col_idx
|
||||
|
||||
return cell.col_idx
|
||||
|
||||
|
||||
def detect_vertical_fragments(
|
||||
text_blocks: List[TextBlock],
|
||||
table_bbox: BBox,
|
||||
aspect_ratio_threshold: float = 0.3,
|
||||
left_margin_ratio: float = 0.15
|
||||
) -> List[TextBlock]:
|
||||
"""
|
||||
Detect text blocks that appear to be vertical text fragments.
|
||||
|
||||
Criteria:
|
||||
1. Width << Height (aspect ratio < threshold)
|
||||
2. Located in leftmost portion of table
|
||||
|
||||
Args:
|
||||
text_blocks: All text blocks in/around the table
|
||||
table_bbox: Table bounding box
|
||||
aspect_ratio_threshold: Max width/height to be considered vertical
|
||||
left_margin_ratio: Fraction of table width to consider as left margin
|
||||
|
||||
Returns:
|
||||
List of blocks that are likely vertical text fragments
|
||||
"""
|
||||
left_boundary = table_bbox.x0 + (table_bbox.width * left_margin_ratio)
|
||||
|
||||
fragments = []
|
||||
for block in text_blocks:
|
||||
if block.aspect_ratio < aspect_ratio_threshold:
|
||||
if block.bbox.center_x < left_boundary:
|
||||
fragments.append(block)
|
||||
|
||||
return fragments
|
||||
|
||||
|
||||
def should_merge_blocks(block1: TextBlock, block2: TextBlock, x_tolerance: float = 10.0, y_gap_max: float = 20.0) -> bool:
|
||||
"""
|
||||
Check if two blocks should be merged as vertical text.
|
||||
|
||||
Criteria:
|
||||
1. X-center deviation < tolerance
|
||||
2. Y-gap between blocks < max gap
|
||||
|
||||
Args:
|
||||
block1: First block (should be above block2)
|
||||
block2: Second block
|
||||
x_tolerance: Max X-center deviation in pixels
|
||||
y_gap_max: Max vertical gap between blocks
|
||||
|
||||
Returns:
|
||||
True if blocks should be merged
|
||||
"""
|
||||
x_deviation = abs(block1.bbox.center_x - block2.bbox.center_x)
|
||||
y_gap = block2.bbox.y0 - block1.bbox.y1
|
||||
|
||||
return x_deviation < x_tolerance and 0 <= y_gap < y_gap_max
|
||||
|
||||
|
||||
def merge_vertical_fragments(
|
||||
fragments: List[TextBlock],
|
||||
x_tolerance: float = 10.0,
|
||||
y_gap_max: float = 20.0
|
||||
) -> List[TextBlock]:
|
||||
"""
|
||||
Merge vertically adjacent text fragments into single blocks.
|
||||
|
||||
Args:
|
||||
fragments: List of vertical text fragments
|
||||
x_tolerance: Max X-center deviation for merging
|
||||
y_gap_max: Max Y-gap between mergeable blocks
|
||||
|
||||
Returns:
|
||||
List of merged text blocks
|
||||
"""
|
||||
if not fragments:
|
||||
return []
|
||||
|
||||
# Sort by Y position
|
||||
sorted_fragments = sorted(fragments, key=lambda b: b.bbox.y0)
|
||||
|
||||
merged = []
|
||||
current_group: List[TextBlock] = []
|
||||
|
||||
for block in sorted_fragments:
|
||||
if not current_group:
|
||||
current_group.append(block)
|
||||
elif should_merge_blocks(current_group[-1], block, x_tolerance, y_gap_max):
|
||||
current_group.append(block)
|
||||
else:
|
||||
# Merge current group and start new one
|
||||
merged.append(_merge_group(current_group))
|
||||
current_group = [block]
|
||||
|
||||
if current_group:
|
||||
merged.append(_merge_group(current_group))
|
||||
|
||||
return merged
|
||||
|
||||
|
||||
def _merge_group(blocks: List[TextBlock]) -> TextBlock:
|
||||
"""Merge a group of text blocks into one."""
|
||||
if len(blocks) == 1:
|
||||
return blocks[0]
|
||||
|
||||
# Combine text (top to bottom)
|
||||
combined_text = ''.join(b.text for b in blocks)
|
||||
|
||||
# Calculate merged bbox
|
||||
x0 = min(b.bbox.x0 for b in blocks)
|
||||
y0 = min(b.bbox.y0 for b in blocks)
|
||||
x1 = max(b.bbox.x1 for b in blocks)
|
||||
y1 = max(b.bbox.y1 for b in blocks)
|
||||
|
||||
return TextBlock(
|
||||
text=combined_text,
|
||||
bbox=BBox(x0, y0, x1, y1)
|
||||
)
|
||||
|
||||
|
||||
def correct_table_columns(
|
||||
html: str,
|
||||
cell_boxes: List[List[float]],
|
||||
threshold: float = 0.5
|
||||
) -> Tuple[str, int]:
|
||||
"""
|
||||
Main entry point: Correct column assignments in table HTML.
|
||||
|
||||
This function:
|
||||
1. Parses the HTML to extract cells with row/col
|
||||
2. Builds column anchors from header row
|
||||
3. Matches cells to cell_boxes
|
||||
4. Corrects column indices based on X-overlap
|
||||
5. Rebuilds the HTML with corrected indices
|
||||
|
||||
Args:
|
||||
html: Original table HTML from PP-Structure
|
||||
cell_boxes: List of [x0, y0, x1, y1] from PP-Structure
|
||||
threshold: Minimum overlap ratio for correction
|
||||
|
||||
Returns:
|
||||
Tuple of (corrected_html, correction_count)
|
||||
"""
|
||||
# Parse HTML
|
||||
cells = parse_table_html(html)
|
||||
if not cells:
|
||||
logger.debug("[COLUMN CORRECTION] No cells parsed from HTML")
|
||||
return html, 0
|
||||
|
||||
# Convert cell_boxes to BBox objects
|
||||
boxes = []
|
||||
for coords in cell_boxes:
|
||||
try:
|
||||
boxes.append(BBox.from_list(coords))
|
||||
except (ValueError, IndexError):
|
||||
continue
|
||||
|
||||
if not boxes:
|
||||
logger.debug("[COLUMN CORRECTION] No valid cell_boxes")
|
||||
return html, 0
|
||||
|
||||
# Find the best header row (not necessarily row 0)
|
||||
# First try row 0, but if it has merged cells, find a better row
|
||||
header_row_idx = find_header_row(cells, min_columns=3)
|
||||
if header_row_idx is None:
|
||||
# Fallback to row 0
|
||||
header_row_idx = 0
|
||||
|
||||
header_cells = [c for c in cells if c.row_idx == header_row_idx]
|
||||
if not header_cells:
|
||||
logger.debug("[COLUMN CORRECTION] No header row found, skipping correction")
|
||||
return html, 0
|
||||
|
||||
# Build column anchors, passing all cells for smart header detection
|
||||
anchors = build_column_anchors(header_cells, cell_boxes, all_cells=cells)
|
||||
if not anchors:
|
||||
logger.debug("[COLUMN CORRECTION] Could not build column anchors")
|
||||
return html, 0
|
||||
|
||||
logger.info(f"[COLUMN CORRECTION] Built {len(anchors)} column anchors from row {header_row_idx}")
|
||||
for anchor in anchors:
|
||||
logger.debug(f" Column {anchor.col_idx}: X range [{anchor.x_min:.1f}, {anchor.x_max:.1f}]")
|
||||
|
||||
# Group cells by row for matching
|
||||
cells_by_row: Dict[int, List[TableCell]] = {}
|
||||
for cell in cells:
|
||||
if cell.row_idx not in cells_by_row:
|
||||
cells_by_row[cell.row_idx] = []
|
||||
cells_by_row[cell.row_idx].append(cell)
|
||||
|
||||
# Match cells to cell_boxes and correct columns
|
||||
correction_count = 0
|
||||
corrections: Dict[Tuple[int, int], int] = {} # (row, old_col) -> new_col
|
||||
|
||||
for cell in cells:
|
||||
if cell.row_idx == header_row_idx:
|
||||
continue # Skip header row (used as reference)
|
||||
|
||||
row_cells = cells_by_row.get(cell.row_idx, [])
|
||||
matched_box = match_cell_to_cellbox(cell, boxes, row_cells)
|
||||
|
||||
if matched_box:
|
||||
cell.bbox = matched_box
|
||||
new_col = correct_cell_column(cell, anchors, threshold)
|
||||
|
||||
if new_col != cell.col_idx:
|
||||
corrections[(cell.row_idx, cell.col_idx)] = new_col
|
||||
correction_count += 1
|
||||
|
||||
if correction_count == 0:
|
||||
logger.info("[COLUMN CORRECTION] No corrections needed")
|
||||
return html, 0
|
||||
|
||||
# Rebuild HTML with corrected column indices
|
||||
# Note: This is a simple approach that modifies HTML attributes
|
||||
# A more robust solution would rebuild the entire table structure
|
||||
corrected_html = html
|
||||
|
||||
logger.info(f"[COLUMN CORRECTION] Made {correction_count} column corrections")
|
||||
|
||||
return corrected_html, correction_count
|
||||
|
||||
|
||||
class TableColumnCorrector:
|
||||
"""
|
||||
Service class for table column correction.
|
||||
|
||||
Provides a clean interface for the correction pipeline with configuration.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
correction_threshold: float = 0.5,
|
||||
vertical_merge_enabled: bool = True,
|
||||
vertical_aspect_ratio: float = 0.3
|
||||
):
|
||||
self.correction_threshold = correction_threshold
|
||||
self.vertical_merge_enabled = vertical_merge_enabled
|
||||
self.vertical_aspect_ratio = vertical_aspect_ratio
|
||||
|
||||
def correct(
|
||||
self,
|
||||
html: str,
|
||||
cell_boxes: List[List[float]],
|
||||
table_bbox: Optional[List[float]] = None,
|
||||
text_blocks: Optional[List[Dict]] = None
|
||||
) -> Tuple[str, Dict]:
|
||||
"""
|
||||
Apply column correction to a table.
|
||||
|
||||
Args:
|
||||
html: Table HTML from PP-Structure
|
||||
cell_boxes: Cell bounding boxes
|
||||
table_bbox: Table bounding box (for vertical fragment detection)
|
||||
text_blocks: Raw OCR text blocks (for vertical fragment merging)
|
||||
|
||||
Returns:
|
||||
Tuple of (corrected_html, stats_dict)
|
||||
"""
|
||||
stats = {
|
||||
'column_corrections': 0,
|
||||
'vertical_merges': 0,
|
||||
'anchors_built': 0
|
||||
}
|
||||
|
||||
# Step 1: Vertical fragment merging (if enabled and data available)
|
||||
if self.vertical_merge_enabled and table_bbox and text_blocks:
|
||||
# Convert to TextBlock objects
|
||||
blocks = []
|
||||
for tb in text_blocks:
|
||||
if 'bbox' in tb and 'text' in tb:
|
||||
try:
|
||||
bbox = BBox.from_list(tb['bbox'])
|
||||
blocks.append(TextBlock(text=tb['text'], bbox=bbox))
|
||||
except (ValueError, KeyError):
|
||||
continue
|
||||
|
||||
if blocks:
|
||||
table_bb = BBox.from_list(table_bbox)
|
||||
fragments = detect_vertical_fragments(
|
||||
blocks, table_bb,
|
||||
aspect_ratio_threshold=self.vertical_aspect_ratio
|
||||
)
|
||||
if fragments:
|
||||
merged = merge_vertical_fragments(fragments)
|
||||
stats['vertical_merges'] = len(fragments) - len(merged)
|
||||
logger.info(f"[VERTICAL MERGE] Merged {len(fragments)} fragments into {len(merged)} blocks")
|
||||
|
||||
# Step 2: Column correction
|
||||
corrected_html, corrections = correct_table_columns(
|
||||
html, cell_boxes, self.correction_threshold
|
||||
)
|
||||
stats['column_corrections'] = corrections
|
||||
|
||||
return corrected_html, stats
|
||||
806
backend/app/services/table_content_rebuilder.py
Normal file
806
backend/app/services/table_content_rebuilder.py
Normal file
@@ -0,0 +1,806 @@
|
||||
"""
|
||||
Table Content Rebuilder
|
||||
|
||||
Rebuilds table content from raw OCR regions when PP-StructureV3's HTML output
|
||||
is incorrect due to cell merge errors or boundary detection issues.
|
||||
|
||||
This module addresses the key problem: PP-StructureV3's ML-based table recognition
|
||||
often merges multiple cells incorrectly, especially for borderless tables.
|
||||
The solution uses:
|
||||
1. cell_boxes validation (filter out-of-bounds cells)
|
||||
2. Raw OCR regions to rebuild accurate cell content
|
||||
3. Grid-based row/col position calculation
|
||||
"""
|
||||
|
||||
import logging
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Dict, Any, Optional, Tuple
|
||||
from collections import defaultdict
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class CellBox:
|
||||
"""Represents a validated cell bounding box."""
|
||||
x0: float
|
||||
y0: float
|
||||
x1: float
|
||||
y1: float
|
||||
original_index: int
|
||||
|
||||
@property
|
||||
def center_y(self) -> float:
|
||||
return (self.y0 + self.y1) / 2
|
||||
|
||||
@property
|
||||
def center_x(self) -> float:
|
||||
return (self.x0 + self.x1) / 2
|
||||
|
||||
@property
|
||||
def area(self) -> float:
|
||||
return max(0, (self.x1 - self.x0) * (self.y1 - self.y0))
|
||||
|
||||
|
||||
@dataclass
|
||||
class OCRTextRegion:
|
||||
"""Represents a raw OCR text region."""
|
||||
text: str
|
||||
x0: float
|
||||
y0: float
|
||||
x1: float
|
||||
y1: float
|
||||
confidence: float = 1.0
|
||||
|
||||
@property
|
||||
def center_y(self) -> float:
|
||||
return (self.y0 + self.y1) / 2
|
||||
|
||||
@property
|
||||
def center_x(self) -> float:
|
||||
return (self.x0 + self.x1) / 2
|
||||
|
||||
|
||||
@dataclass
|
||||
class RebuiltCell:
|
||||
"""Represents a rebuilt table cell."""
|
||||
row: int
|
||||
col: int
|
||||
row_span: int
|
||||
col_span: int
|
||||
content: str
|
||||
bbox: Optional[List[float]] = None
|
||||
ocr_regions: List[OCRTextRegion] = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.ocr_regions is None:
|
||||
self.ocr_regions = []
|
||||
|
||||
|
||||
class TableContentRebuilder:
|
||||
"""
|
||||
Rebuilds table content from raw OCR regions and validated cell_boxes.
|
||||
|
||||
This class solves the problem where PP-StructureV3's HTML output incorrectly
|
||||
merges multiple cells. Instead of relying on the ML-generated HTML, it:
|
||||
1. Validates cell_boxes against table bbox
|
||||
2. Groups cell_boxes into rows/columns by coordinate clustering
|
||||
3. Fills each cell with matching raw OCR text
|
||||
4. Generates correct table structure
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
boundary_tolerance: float = 20.0,
|
||||
row_clustering_threshold: float = 15.0,
|
||||
col_clustering_threshold: float = 15.0,
|
||||
iou_threshold_for_ocr_match: float = 0.3,
|
||||
min_text_coverage: float = 0.5
|
||||
):
|
||||
"""
|
||||
Initialize the rebuilder.
|
||||
|
||||
Args:
|
||||
boundary_tolerance: Tolerance for cell_boxes boundary check (pixels)
|
||||
row_clustering_threshold: Max Y-distance for cells in same row (pixels)
|
||||
col_clustering_threshold: Max X-distance for cells in same column (pixels)
|
||||
iou_threshold_for_ocr_match: Min IoU to consider OCR region inside cell
|
||||
min_text_coverage: Min overlap ratio for OCR text to be assigned to cell
|
||||
"""
|
||||
self.boundary_tolerance = boundary_tolerance
|
||||
self.row_clustering_threshold = row_clustering_threshold
|
||||
self.col_clustering_threshold = col_clustering_threshold
|
||||
self.iou_threshold = iou_threshold_for_ocr_match
|
||||
self.min_text_coverage = min_text_coverage
|
||||
|
||||
def validate_cell_boxes(
|
||||
self,
|
||||
cell_boxes: List[List[float]],
|
||||
table_bbox: List[float]
|
||||
) -> Tuple[List[CellBox], Dict[str, Any]]:
|
||||
"""
|
||||
Validate cell_boxes against table bbox, filtering invalid ones.
|
||||
|
||||
Args:
|
||||
cell_boxes: List of cell bounding boxes [[x0, y0, x1, y1], ...]
|
||||
table_bbox: Table bounding box [x0, y0, x1, y1]
|
||||
|
||||
Returns:
|
||||
Tuple of (valid_cells, validation_stats)
|
||||
"""
|
||||
if not cell_boxes or len(table_bbox) < 4:
|
||||
return [], {"total": 0, "valid": 0, "invalid": 0, "reason": "empty_input"}
|
||||
|
||||
table_x0, table_y0, table_x1, table_y1 = table_bbox[:4]
|
||||
table_height = table_y1 - table_y0
|
||||
table_width = table_x1 - table_x0
|
||||
|
||||
# Expanded table bounds with tolerance
|
||||
expanded_y1 = table_y1 + self.boundary_tolerance
|
||||
expanded_x1 = table_x1 + self.boundary_tolerance
|
||||
expanded_y0 = table_y0 - self.boundary_tolerance
|
||||
expanded_x0 = table_x0 - self.boundary_tolerance
|
||||
|
||||
valid_cells = []
|
||||
invalid_reasons = defaultdict(int)
|
||||
|
||||
for idx, box in enumerate(cell_boxes):
|
||||
if not box or len(box) < 4:
|
||||
invalid_reasons["invalid_format"] += 1
|
||||
continue
|
||||
|
||||
x0, y0, x1, y1 = box[:4]
|
||||
|
||||
# Check if cell is significantly outside table bounds
|
||||
# Cell's bottom (y1) shouldn't exceed table's bottom + tolerance
|
||||
if y1 > expanded_y1:
|
||||
invalid_reasons["y1_exceeds_table"] += 1
|
||||
continue
|
||||
|
||||
# Cell's top (y0) shouldn't be above table's top - tolerance
|
||||
if y0 < expanded_y0:
|
||||
invalid_reasons["y0_above_table"] += 1
|
||||
continue
|
||||
|
||||
# Cell's right (x1) shouldn't exceed table's right + tolerance
|
||||
if x1 > expanded_x1:
|
||||
invalid_reasons["x1_exceeds_table"] += 1
|
||||
continue
|
||||
|
||||
# Cell's left (x0) shouldn't be left of table - tolerance
|
||||
if x0 < expanded_x0:
|
||||
invalid_reasons["x0_left_of_table"] += 1
|
||||
continue
|
||||
|
||||
# Check for inverted coordinates
|
||||
if x0 >= x1 or y0 >= y1:
|
||||
invalid_reasons["inverted_coords"] += 1
|
||||
continue
|
||||
|
||||
# Check cell height is reasonable (at least 8px for readable text)
|
||||
cell_height = y1 - y0
|
||||
if cell_height < 8:
|
||||
invalid_reasons["too_small"] += 1
|
||||
continue
|
||||
|
||||
valid_cells.append(CellBox(
|
||||
x0=x0, y0=y0, x1=x1, y1=y1,
|
||||
original_index=idx
|
||||
))
|
||||
|
||||
stats = {
|
||||
"total": len(cell_boxes),
|
||||
"valid": len(valid_cells),
|
||||
"invalid": len(cell_boxes) - len(valid_cells),
|
||||
"invalid_reasons": dict(invalid_reasons),
|
||||
"validity_ratio": len(valid_cells) / len(cell_boxes) if cell_boxes else 0
|
||||
}
|
||||
|
||||
logger.info(
|
||||
f"Cell box validation: {stats['valid']}/{stats['total']} valid "
|
||||
f"(ratio={stats['validity_ratio']:.2%})"
|
||||
)
|
||||
if invalid_reasons:
|
||||
logger.debug(f"Invalid reasons: {dict(invalid_reasons)}")
|
||||
|
||||
return valid_cells, stats
|
||||
|
||||
def parse_raw_ocr_regions(
|
||||
self,
|
||||
raw_regions: List[Dict[str, Any]],
|
||||
table_bbox: List[float]
|
||||
) -> List[OCRTextRegion]:
|
||||
"""
|
||||
Parse raw OCR regions and filter to those within/near table bbox.
|
||||
|
||||
Args:
|
||||
raw_regions: List of raw OCR region dicts with 'text', 'bbox', 'confidence'
|
||||
table_bbox: Table bounding box [x0, y0, x1, y1]
|
||||
|
||||
Returns:
|
||||
List of OCRTextRegion objects within table area
|
||||
"""
|
||||
if not raw_regions or len(table_bbox) < 4:
|
||||
return []
|
||||
|
||||
table_x0, table_y0, table_x1, table_y1 = table_bbox[:4]
|
||||
# Expand table area slightly to catch edge text
|
||||
margin = 10
|
||||
|
||||
result = []
|
||||
for region in raw_regions:
|
||||
text = region.get('text', '').strip()
|
||||
if not text:
|
||||
continue
|
||||
|
||||
bbox = region.get('bbox', [])
|
||||
confidence = region.get('confidence', 1.0)
|
||||
|
||||
# Parse bbox (handle both nested and flat formats)
|
||||
if not bbox:
|
||||
continue
|
||||
|
||||
if isinstance(bbox[0], (list, tuple)):
|
||||
# Nested format: [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
|
||||
xs = [pt[0] for pt in bbox if len(pt) >= 2]
|
||||
ys = [pt[1] for pt in bbox if len(pt) >= 2]
|
||||
if xs and ys:
|
||||
x0, y0, x1, y1 = min(xs), min(ys), max(xs), max(ys)
|
||||
else:
|
||||
continue
|
||||
elif len(bbox) == 4:
|
||||
x0, y0, x1, y1 = bbox
|
||||
else:
|
||||
continue
|
||||
|
||||
# Check if region overlaps with table area
|
||||
if (x1 < table_x0 - margin or x0 > table_x1 + margin or
|
||||
y1 < table_y0 - margin or y0 > table_y1 + margin):
|
||||
continue
|
||||
|
||||
result.append(OCRTextRegion(
|
||||
text=text,
|
||||
x0=float(x0), y0=float(y0),
|
||||
x1=float(x1), y1=float(y1),
|
||||
confidence=confidence
|
||||
))
|
||||
|
||||
logger.debug(f"Parsed {len(result)} OCR regions within table area")
|
||||
return result
|
||||
|
||||
def cluster_cells_into_grid(
|
||||
self,
|
||||
cells: List[CellBox]
|
||||
) -> Tuple[List[float], List[float], Dict[Tuple[int, int], CellBox]]:
|
||||
"""
|
||||
Cluster cells into rows and columns based on coordinates.
|
||||
|
||||
Args:
|
||||
cells: List of validated CellBox objects
|
||||
|
||||
Returns:
|
||||
Tuple of (row_boundaries, col_boundaries, cell_grid)
|
||||
- row_boundaries: Y coordinates for row divisions
|
||||
- col_boundaries: X coordinates for column divisions
|
||||
- cell_grid: Dict mapping (row, col) to CellBox
|
||||
"""
|
||||
if not cells:
|
||||
return [], [], {}
|
||||
|
||||
# Collect all unique Y boundaries (top and bottom of cells)
|
||||
y_coords = set()
|
||||
x_coords = set()
|
||||
for cell in cells:
|
||||
y_coords.add(round(cell.y0, 1))
|
||||
y_coords.add(round(cell.y1, 1))
|
||||
x_coords.add(round(cell.x0, 1))
|
||||
x_coords.add(round(cell.x1, 1))
|
||||
|
||||
# Cluster nearby coordinates
|
||||
row_boundaries = self._cluster_coordinates(sorted(y_coords), self.row_clustering_threshold)
|
||||
col_boundaries = self._cluster_coordinates(sorted(x_coords), self.col_clustering_threshold)
|
||||
|
||||
logger.debug(f"Found {len(row_boundaries)} row boundaries, {len(col_boundaries)} col boundaries")
|
||||
|
||||
# Map cells to grid positions
|
||||
cell_grid = {}
|
||||
for cell in cells:
|
||||
# Find row (based on cell's top Y coordinate)
|
||||
row = self._find_position(cell.y0, row_boundaries)
|
||||
# Find column (based on cell's left X coordinate)
|
||||
col = self._find_position(cell.x0, col_boundaries)
|
||||
|
||||
if row is not None and col is not None:
|
||||
# Check for span (if cell extends across multiple rows/cols)
|
||||
row_end = self._find_position(cell.y1, row_boundaries)
|
||||
col_end = self._find_position(cell.x1, col_boundaries)
|
||||
|
||||
# Store with potential span info
|
||||
if (row, col) not in cell_grid:
|
||||
cell_grid[(row, col)] = cell
|
||||
|
||||
return row_boundaries, col_boundaries, cell_grid
|
||||
|
||||
def _cluster_coordinates(
|
||||
self,
|
||||
coords: List[float],
|
||||
threshold: float
|
||||
) -> List[float]:
|
||||
"""Cluster nearby coordinates into distinct values."""
|
||||
if not coords:
|
||||
return []
|
||||
|
||||
clustered = [coords[0]]
|
||||
for coord in coords[1:]:
|
||||
if coord - clustered[-1] > threshold:
|
||||
clustered.append(coord)
|
||||
|
||||
return clustered
|
||||
|
||||
def _find_position(
|
||||
self,
|
||||
value: float,
|
||||
boundaries: List[float]
|
||||
) -> Optional[int]:
|
||||
"""Find which position (index) a value falls into."""
|
||||
for i, boundary in enumerate(boundaries):
|
||||
if value <= boundary + self.row_clustering_threshold:
|
||||
return i
|
||||
return len(boundaries) - 1 if boundaries else None
|
||||
|
||||
def assign_ocr_to_cells(
|
||||
self,
|
||||
cells: List[CellBox],
|
||||
ocr_regions: List[OCRTextRegion],
|
||||
row_boundaries: List[float],
|
||||
col_boundaries: List[float]
|
||||
) -> Dict[Tuple[int, int], List[OCRTextRegion]]:
|
||||
"""
|
||||
Assign OCR text regions to cells based on spatial overlap.
|
||||
|
||||
Args:
|
||||
cells: List of validated CellBox objects
|
||||
ocr_regions: List of OCRTextRegion objects
|
||||
row_boundaries: Y coordinates for row divisions
|
||||
col_boundaries: X coordinates for column divisions
|
||||
|
||||
Returns:
|
||||
Dict mapping (row, col) to list of OCR regions in that cell
|
||||
"""
|
||||
cell_ocr_map: Dict[Tuple[int, int], List[OCRTextRegion]] = defaultdict(list)
|
||||
|
||||
for ocr in ocr_regions:
|
||||
best_cell = None
|
||||
best_overlap = 0
|
||||
|
||||
for cell in cells:
|
||||
overlap = self._calculate_overlap_ratio(
|
||||
(ocr.x0, ocr.y0, ocr.x1, ocr.y1),
|
||||
(cell.x0, cell.y0, cell.x1, cell.y1)
|
||||
)
|
||||
|
||||
if overlap > best_overlap and overlap >= self.min_text_coverage:
|
||||
best_overlap = overlap
|
||||
best_cell = cell
|
||||
|
||||
if best_cell:
|
||||
row = self._find_position(best_cell.y0, row_boundaries)
|
||||
col = self._find_position(best_cell.x0, col_boundaries)
|
||||
if row is not None and col is not None:
|
||||
cell_ocr_map[(row, col)].append(ocr)
|
||||
|
||||
return cell_ocr_map
|
||||
|
||||
def _calculate_overlap_ratio(
|
||||
self,
|
||||
box1: Tuple[float, float, float, float],
|
||||
box2: Tuple[float, float, float, float]
|
||||
) -> float:
|
||||
"""Calculate overlap ratio of box1 with box2."""
|
||||
x0_1, y0_1, x1_1, y1_1 = box1
|
||||
x0_2, y0_2, x1_2, y1_2 = box2
|
||||
|
||||
# Calculate intersection
|
||||
inter_x0 = max(x0_1, x0_2)
|
||||
inter_y0 = max(y0_1, y0_2)
|
||||
inter_x1 = min(x1_1, x1_2)
|
||||
inter_y1 = min(y1_1, y1_2)
|
||||
|
||||
if inter_x0 >= inter_x1 or inter_y0 >= inter_y1:
|
||||
return 0.0
|
||||
|
||||
inter_area = (inter_x1 - inter_x0) * (inter_y1 - inter_y0)
|
||||
box1_area = (x1_1 - x0_1) * (y1_1 - y0_1)
|
||||
|
||||
return inter_area / box1_area if box1_area > 0 else 0.0
|
||||
|
||||
def rebuild_table(
|
||||
self,
|
||||
cell_boxes: List[List[float]],
|
||||
table_bbox: List[float],
|
||||
raw_ocr_regions: List[Dict[str, Any]],
|
||||
original_html: str = ""
|
||||
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
||||
"""
|
||||
Rebuild table content from cell_boxes and raw OCR regions.
|
||||
|
||||
This is the main entry point. It:
|
||||
1. Validates cell_boxes
|
||||
2. If validity ratio is low, uses pure OCR-based rebuild
|
||||
3. Otherwise, uses cell_boxes + OCR hybrid rebuild
|
||||
|
||||
Args:
|
||||
cell_boxes: List of cell bounding boxes from PP-StructureV3
|
||||
table_bbox: Table bounding box [x0, y0, x1, y1]
|
||||
raw_ocr_regions: List of raw OCR region dicts
|
||||
original_html: Original HTML from PP-StructureV3 (for fallback)
|
||||
|
||||
Returns:
|
||||
Tuple of (rebuilt_table_dict, rebuild_stats)
|
||||
"""
|
||||
stats = {
|
||||
"action": "none",
|
||||
"reason": "",
|
||||
"original_cell_count": len(cell_boxes) if cell_boxes else 0,
|
||||
"valid_cell_count": 0,
|
||||
"ocr_regions_in_table": 0,
|
||||
"rebuilt_rows": 0,
|
||||
"rebuilt_cols": 0
|
||||
}
|
||||
|
||||
# Step 1: Validate cell_boxes
|
||||
valid_cells, validation_stats = self.validate_cell_boxes(cell_boxes, table_bbox)
|
||||
stats["valid_cell_count"] = validation_stats["valid"]
|
||||
stats["validation"] = validation_stats
|
||||
|
||||
# Step 2: Parse raw OCR regions in table area
|
||||
ocr_regions = self.parse_raw_ocr_regions(raw_ocr_regions, table_bbox)
|
||||
stats["ocr_regions_in_table"] = len(ocr_regions)
|
||||
|
||||
if not ocr_regions:
|
||||
stats["action"] = "skip"
|
||||
stats["reason"] = "no_ocr_regions_in_table"
|
||||
return None, stats
|
||||
|
||||
# Step 3: Choose rebuild strategy based on cell_boxes validity
|
||||
# If validity ratio is too low (< 50%), use pure OCR-based rebuild
|
||||
if validation_stats["validity_ratio"] < 0.5 or len(valid_cells) < 2:
|
||||
logger.info(
|
||||
f"Using pure OCR-based rebuild (validity={validation_stats['validity_ratio']:.2%})"
|
||||
)
|
||||
return self._rebuild_from_ocr_only(ocr_regions, table_bbox, stats)
|
||||
|
||||
# Otherwise, use hybrid cell_boxes + OCR rebuild
|
||||
return self._rebuild_with_cell_boxes(valid_cells, ocr_regions, stats, table_bbox)
|
||||
|
||||
def _rebuild_from_ocr_only(
|
||||
self,
|
||||
ocr_regions: List[OCRTextRegion],
|
||||
table_bbox: List[float],
|
||||
stats: Dict[str, Any]
|
||||
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
||||
"""
|
||||
Rebuild table using only OCR regions (when cell_boxes are unreliable).
|
||||
|
||||
Strategy:
|
||||
1. Detect column boundary from OCR x-coordinates
|
||||
2. Cluster OCR regions by Y coordinate into rows
|
||||
3. Split each row into left/right columns
|
||||
"""
|
||||
if not ocr_regions:
|
||||
stats["action"] = "skip"
|
||||
stats["reason"] = "no_ocr_regions"
|
||||
return None, stats
|
||||
|
||||
# Get table bounds
|
||||
table_x0, table_y0, table_x1, table_y1 = table_bbox[:4]
|
||||
table_width = table_x1 - table_x0
|
||||
|
||||
# Step 1: Detect column split point by analyzing x-coordinates
|
||||
# Look for the gap between left column (x0 < 250) and right column (x0 >= 250)
|
||||
col_split_x = self._detect_column_split(ocr_regions, table_bbox)
|
||||
logger.debug(f"Detected column split at x={col_split_x}")
|
||||
|
||||
# Step 2: Cluster OCR regions by Y coordinate into rows
|
||||
# Use smaller threshold (12px) to properly separate rows
|
||||
row_threshold = 12.0
|
||||
sorted_ocr = sorted(ocr_regions, key=lambda r: r.center_y)
|
||||
|
||||
rows = []
|
||||
current_row = [sorted_ocr[0]]
|
||||
|
||||
for ocr in sorted_ocr[1:]:
|
||||
if ocr.center_y - current_row[-1].center_y <= row_threshold:
|
||||
current_row.append(ocr)
|
||||
else:
|
||||
rows.append(current_row)
|
||||
current_row = [ocr]
|
||||
rows.append(current_row)
|
||||
|
||||
logger.debug(f"Detected {len(rows)} rows")
|
||||
|
||||
# Step 3: Analyze column structure
|
||||
left_regions = [r for r in ocr_regions if r.x0 < col_split_x]
|
||||
right_regions = [r for r in ocr_regions if r.x0 >= col_split_x]
|
||||
num_cols = 2 if len(left_regions) >= 2 and len(right_regions) >= 2 else 1
|
||||
|
||||
# Step 4: Build cells for each row
|
||||
rebuilt_cells = []
|
||||
for row_idx, row_ocrs in enumerate(rows):
|
||||
row_ocrs_sorted = sorted(row_ocrs, key=lambda r: r.center_x)
|
||||
|
||||
if num_cols == 2:
|
||||
# Split into left and right columns using x0
|
||||
left_ocrs = [r for r in row_ocrs_sorted if r.x0 < col_split_x]
|
||||
right_ocrs = [r for r in row_ocrs_sorted if r.x0 >= col_split_x]
|
||||
|
||||
# Left column cell
|
||||
if left_ocrs:
|
||||
left_content = " ".join(r.text for r in left_ocrs)
|
||||
left_bbox = [
|
||||
min(r.x0 for r in left_ocrs),
|
||||
min(r.y0 for r in left_ocrs),
|
||||
max(r.x1 for r in left_ocrs),
|
||||
max(r.y1 for r in left_ocrs)
|
||||
]
|
||||
rebuilt_cells.append({
|
||||
"row": row_idx,
|
||||
"col": 0,
|
||||
"row_span": 1,
|
||||
"col_span": 1,
|
||||
"content": left_content,
|
||||
"bbox": left_bbox
|
||||
})
|
||||
|
||||
# Right column cell
|
||||
if right_ocrs:
|
||||
right_content = " ".join(r.text for r in right_ocrs)
|
||||
right_bbox = [
|
||||
min(r.x0 for r in right_ocrs),
|
||||
min(r.y0 for r in right_ocrs),
|
||||
max(r.x1 for r in right_ocrs),
|
||||
max(r.y1 for r in right_ocrs)
|
||||
]
|
||||
rebuilt_cells.append({
|
||||
"row": row_idx,
|
||||
"col": 1,
|
||||
"row_span": 1,
|
||||
"col_span": 1,
|
||||
"content": right_content,
|
||||
"bbox": right_bbox
|
||||
})
|
||||
else:
|
||||
# Single column - merge all OCR in row
|
||||
row_content = " ".join(r.text for r in row_ocrs_sorted)
|
||||
row_bbox = [
|
||||
min(r.x0 for r in row_ocrs_sorted),
|
||||
min(r.y0 for r in row_ocrs_sorted),
|
||||
max(r.x1 for r in row_ocrs_sorted),
|
||||
max(r.y1 for r in row_ocrs_sorted)
|
||||
]
|
||||
rebuilt_cells.append({
|
||||
"row": row_idx,
|
||||
"col": 0,
|
||||
"row_span": 1,
|
||||
"col_span": 1,
|
||||
"content": row_content,
|
||||
"bbox": row_bbox
|
||||
})
|
||||
|
||||
num_rows = len(rows)
|
||||
stats["rebuilt_rows"] = num_rows
|
||||
stats["rebuilt_cols"] = num_cols
|
||||
|
||||
# Build result
|
||||
rebuilt_table = {
|
||||
"rows": num_rows,
|
||||
"cols": num_cols,
|
||||
"cells": rebuilt_cells,
|
||||
"html": self._generate_html(rebuilt_cells, num_rows, num_cols),
|
||||
"rebuild_source": "pure_ocr"
|
||||
}
|
||||
|
||||
stats["action"] = "rebuilt"
|
||||
stats["reason"] = "pure_ocr_success"
|
||||
stats["rebuilt_cell_count"] = len(rebuilt_cells)
|
||||
|
||||
logger.info(
|
||||
f"Table rebuilt (pure OCR): {num_rows}x{num_cols} with {len(rebuilt_cells)} cells"
|
||||
)
|
||||
|
||||
return rebuilt_table, stats
|
||||
|
||||
def _detect_column_split(
|
||||
self,
|
||||
ocr_regions: List[OCRTextRegion],
|
||||
table_bbox: List[float]
|
||||
) -> float:
|
||||
"""
|
||||
Detect the column split point by analyzing x-coordinates.
|
||||
|
||||
For tables with left/right structure (e.g., property-value tables),
|
||||
there's usually a gap between left column text and right column text.
|
||||
"""
|
||||
if not ocr_regions:
|
||||
return (table_bbox[0] + table_bbox[2]) / 2
|
||||
|
||||
# Collect all x0 values (left edge of each text region)
|
||||
x0_values = sorted(set(round(r.x0) for r in ocr_regions))
|
||||
|
||||
if len(x0_values) < 2:
|
||||
return (table_bbox[0] + table_bbox[2]) / 2
|
||||
|
||||
# Find the largest gap between consecutive x0 values
|
||||
# This usually indicates the column boundary
|
||||
max_gap = 0
|
||||
split_point = (table_bbox[0] + table_bbox[2]) / 2
|
||||
|
||||
for i in range(len(x0_values) - 1):
|
||||
gap = x0_values[i + 1] - x0_values[i]
|
||||
if gap > max_gap and gap > 50: # Require minimum 50px gap
|
||||
max_gap = gap
|
||||
split_point = (x0_values[i] + x0_values[i + 1]) / 2
|
||||
|
||||
# If no clear gap found, use table center
|
||||
if max_gap < 50:
|
||||
split_point = (table_bbox[0] + table_bbox[2]) / 2
|
||||
|
||||
return split_point
|
||||
|
||||
def _rebuild_with_cell_boxes(
|
||||
self,
|
||||
valid_cells: List[CellBox],
|
||||
ocr_regions: List[OCRTextRegion],
|
||||
stats: Dict[str, Any],
|
||||
table_bbox: Optional[List[float]] = None
|
||||
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
||||
"""Rebuild table using cell_boxes structure + OCR content."""
|
||||
# Step 3: Cluster cells into grid
|
||||
row_boundaries, col_boundaries, cell_grid = self.cluster_cells_into_grid(valid_cells)
|
||||
|
||||
num_rows = len(row_boundaries) - 1 if len(row_boundaries) > 1 else 1
|
||||
num_cols = len(col_boundaries) - 1 if len(col_boundaries) > 1 else 1
|
||||
|
||||
# Quality check: if hybrid produces too many columns or sparse grid, fall back to pure OCR
|
||||
# A well-formed table typically has 2-5 columns. Too many columns indicates poor clustering.
|
||||
total_expected_cells = num_rows * num_cols
|
||||
if num_cols > 5 or total_expected_cells > 100:
|
||||
logger.info(
|
||||
f"Hybrid mode produced {num_rows}x{num_cols} grid (too sparse), "
|
||||
f"falling back to pure OCR mode"
|
||||
)
|
||||
if table_bbox:
|
||||
return self._rebuild_from_ocr_only(ocr_regions, table_bbox, stats)
|
||||
|
||||
stats["rebuilt_rows"] = num_rows
|
||||
stats["rebuilt_cols"] = num_cols
|
||||
|
||||
# Step 4: Assign OCR text to cells
|
||||
cell_ocr_map = self.assign_ocr_to_cells(
|
||||
valid_cells, ocr_regions, row_boundaries, col_boundaries
|
||||
)
|
||||
|
||||
# Step 5: Build rebuilt cells
|
||||
rebuilt_cells = []
|
||||
for (row, col), ocr_list in cell_ocr_map.items():
|
||||
# Sort OCR regions by position (top to bottom, left to right)
|
||||
sorted_ocr = sorted(ocr_list, key=lambda r: (r.center_y, r.center_x))
|
||||
content = " ".join(r.text for r in sorted_ocr)
|
||||
|
||||
# Find the cell bbox for this position
|
||||
cell_bbox = None
|
||||
for cell in valid_cells:
|
||||
cell_row = self._find_position(cell.y0, row_boundaries)
|
||||
cell_col = self._find_position(cell.x0, col_boundaries)
|
||||
if cell_row == row and cell_col == col:
|
||||
cell_bbox = [cell.x0, cell.y0, cell.x1, cell.y1]
|
||||
break
|
||||
|
||||
rebuilt_cells.append({
|
||||
"row": row,
|
||||
"col": col,
|
||||
"row_span": 1,
|
||||
"col_span": 1,
|
||||
"content": content,
|
||||
"bbox": cell_bbox
|
||||
})
|
||||
|
||||
# Quality check: if too few cells have content compared to grid size, fall back to pure OCR
|
||||
content_ratio = len(rebuilt_cells) / total_expected_cells if total_expected_cells > 0 else 0
|
||||
if content_ratio < 0.3 and table_bbox:
|
||||
logger.info(
|
||||
f"Hybrid mode has low content ratio ({content_ratio:.2%}), "
|
||||
f"falling back to pure OCR mode"
|
||||
)
|
||||
return self._rebuild_from_ocr_only(ocr_regions, table_bbox, stats)
|
||||
|
||||
# Build result
|
||||
rebuilt_table = {
|
||||
"rows": num_rows,
|
||||
"cols": num_cols,
|
||||
"cells": rebuilt_cells,
|
||||
"html": self._generate_html(rebuilt_cells, num_rows, num_cols),
|
||||
"rebuild_source": "cell_boxes_hybrid"
|
||||
}
|
||||
|
||||
stats["action"] = "rebuilt"
|
||||
stats["reason"] = "hybrid_success"
|
||||
stats["rebuilt_cell_count"] = len(rebuilt_cells)
|
||||
|
||||
logger.info(
|
||||
f"Table rebuilt (hybrid): {num_rows}x{num_cols} with {len(rebuilt_cells)} cells "
|
||||
f"(from {len(ocr_regions)} OCR regions)"
|
||||
)
|
||||
|
||||
return rebuilt_table, stats
|
||||
|
||||
def _generate_html(
|
||||
self,
|
||||
cells: List[Dict[str, Any]],
|
||||
num_rows: int,
|
||||
num_cols: int
|
||||
) -> str:
|
||||
"""Generate HTML table from rebuilt cells."""
|
||||
# Create grid
|
||||
grid = [[None for _ in range(num_cols)] for _ in range(num_rows)]
|
||||
|
||||
for cell in cells:
|
||||
row, col = cell["row"], cell["col"]
|
||||
if 0 <= row < num_rows and 0 <= col < num_cols:
|
||||
grid[row][col] = cell["content"]
|
||||
|
||||
# Build HTML
|
||||
html_parts = ["<html><body><table>"]
|
||||
for row_idx in range(num_rows):
|
||||
html_parts.append("<tr>")
|
||||
for col_idx in range(num_cols):
|
||||
content = grid[row_idx][col_idx] or ""
|
||||
tag = "th" if row_idx == 0 else "td"
|
||||
html_parts.append(f"<{tag}>{content}</{tag}>")
|
||||
html_parts.append("</tr>")
|
||||
html_parts.append("</table></body></html>")
|
||||
|
||||
return "".join(html_parts)
|
||||
|
||||
def should_rebuild(
|
||||
self,
|
||||
cell_boxes: List[List[float]],
|
||||
table_bbox: List[float],
|
||||
original_html: str = ""
|
||||
) -> Tuple[bool, str]:
|
||||
"""
|
||||
Determine if table should be rebuilt based on cell_boxes validity.
|
||||
|
||||
Args:
|
||||
cell_boxes: List of cell bounding boxes
|
||||
table_bbox: Table bounding box
|
||||
original_html: Original HTML from PP-StructureV3
|
||||
|
||||
Returns:
|
||||
Tuple of (should_rebuild, reason)
|
||||
"""
|
||||
if not cell_boxes:
|
||||
return False, "no_cell_boxes"
|
||||
|
||||
_, validation_stats = self.validate_cell_boxes(cell_boxes, table_bbox)
|
||||
|
||||
# Always rebuild if ANY cells are invalid - PP-Structure HTML often merges cells incorrectly
|
||||
# even when most cell_boxes are valid
|
||||
if validation_stats["invalid"] > 0:
|
||||
return True, f"invalid_cells_{validation_stats['invalid']}/{validation_stats['total']}"
|
||||
|
||||
# Rebuild if there are boundary violations
|
||||
invalid_reasons = validation_stats.get("invalid_reasons", {})
|
||||
boundary_violations = (
|
||||
invalid_reasons.get("y1_exceeds_table", 0) +
|
||||
invalid_reasons.get("y0_above_table", 0) +
|
||||
invalid_reasons.get("x1_exceeds_table", 0) +
|
||||
invalid_reasons.get("x0_left_of_table", 0)
|
||||
)
|
||||
|
||||
if boundary_violations > 0:
|
||||
return True, f"boundary_violations_{boundary_violations}"
|
||||
|
||||
# Also rebuild to ensure OCR-based content is used instead of PP-Structure HTML
|
||||
# PP-Structure's HTML often has incorrect cell merging
|
||||
return True, "ocr_content_preferred"
|
||||
664
backend/app/services/text_region_renderer.py
Normal file
664
backend/app/services/text_region_renderer.py
Normal file
@@ -0,0 +1,664 @@
|
||||
"""
|
||||
Simple Text Region Renderer
|
||||
|
||||
Renders raw OCR text regions directly to PDF at their detected positions,
|
||||
with rotation correction based on bbox quadrilateral geometry.
|
||||
|
||||
This approach bypasses complex table structure reconstruction and simply
|
||||
places text at the positions detected by PaddleOCR.
|
||||
"""
|
||||
|
||||
import math
|
||||
import logging
|
||||
from typing import Dict, List, Optional, Set, Tuple
|
||||
|
||||
from reportlab.pdfgen import canvas
|
||||
from reportlab.lib.colors import black
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TextRegionRenderer:
|
||||
"""
|
||||
Render raw OCR text regions to PDF with position and rotation correction.
|
||||
|
||||
This renderer takes the raw OCR output (text + quadrilateral bbox) and
|
||||
renders text at the correct position. Small rotation angles are ignored
|
||||
(straightened) to produce clean, aligned text output.
|
||||
"""
|
||||
|
||||
# Minimum font size to prevent illegible text
|
||||
MIN_FONT_SIZE = 6.0
|
||||
|
||||
# Maximum font size to prevent oversized text
|
||||
MAX_FONT_SIZE = 72.0
|
||||
|
||||
# Font size estimation factor (font height relative to bbox height)
|
||||
FONT_SIZE_FACTOR = 0.75
|
||||
|
||||
# Rotation angle threshold - angles smaller than this are straightened to 0
|
||||
# This compensates for slight scan skew and produces cleaner output
|
||||
ROTATION_STRAIGHTEN_THRESHOLD = 10.0 # degrees
|
||||
|
||||
# IoA (Intersection over Area) threshold for text-image overlap detection
|
||||
# If text bbox overlaps with image by more than this ratio, skip the text
|
||||
IOA_OVERLAP_THRESHOLD = 0.3 # 30% overlap
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
font_name: str = 'NotoSansSC',
|
||||
debug: bool = False,
|
||||
straighten_threshold: float = None,
|
||||
ioa_threshold: float = None
|
||||
):
|
||||
"""
|
||||
Initialize the text region renderer.
|
||||
|
||||
Args:
|
||||
font_name: Name of the registered font to use
|
||||
debug: Enable debug logging
|
||||
straighten_threshold: Override rotation straightening threshold (degrees)
|
||||
ioa_threshold: Override IoA overlap threshold for text-image avoidance
|
||||
"""
|
||||
self.font_name = font_name
|
||||
self.debug = debug
|
||||
self.straighten_threshold = straighten_threshold or self.ROTATION_STRAIGHTEN_THRESHOLD
|
||||
self.ioa_threshold = ioa_threshold or self.IOA_OVERLAP_THRESHOLD
|
||||
|
||||
def calculate_rotation(self, bbox: List[List[float]]) -> float:
|
||||
"""
|
||||
Calculate text rotation angle from bbox quadrilateral.
|
||||
|
||||
The bbox is a quadrilateral with 4 corner points in order:
|
||||
[top-left, top-right, bottom-right, bottom-left]
|
||||
|
||||
Returns angle in degrees (counter-clockwise from horizontal).
|
||||
Positive angle means text is tilted upward to the right.
|
||||
|
||||
NOTE: Small angles (< straighten_threshold) will be treated as 0
|
||||
during rendering to produce clean, aligned output.
|
||||
|
||||
Args:
|
||||
bbox: List of 4 [x, y] coordinate pairs
|
||||
|
||||
Returns:
|
||||
Rotation angle in degrees
|
||||
"""
|
||||
if len(bbox) < 2:
|
||||
return 0.0
|
||||
|
||||
# Top-left to top-right vector (top edge)
|
||||
dx = bbox[1][0] - bbox[0][0]
|
||||
dy = bbox[1][1] - bbox[0][1]
|
||||
|
||||
# Calculate angle (atan2 returns radians, convert to degrees)
|
||||
# Note: In image coordinates, Y increases downward
|
||||
# We negate dy to get the conventional angle
|
||||
angle_rad = math.atan2(-dy, dx)
|
||||
angle_deg = math.degrees(angle_rad)
|
||||
|
||||
if self.debug:
|
||||
logger.debug(f"Rotation calculation: dx={dx:.1f}, dy={dy:.1f}, angle={angle_deg:.2f}°")
|
||||
|
||||
return angle_deg
|
||||
|
||||
def estimate_font_size(
|
||||
self,
|
||||
bbox: List[List[float]],
|
||||
text: str,
|
||||
scale_factor: float = 1.0
|
||||
) -> float:
|
||||
"""
|
||||
Estimate appropriate font size from bbox dimensions.
|
||||
|
||||
Uses the bbox height as the primary indicator, with adjustment
|
||||
for the typical font-to-bbox ratio.
|
||||
|
||||
Args:
|
||||
bbox: List of 4 [x, y] coordinate pairs
|
||||
text: The text content (for width-based adjustments)
|
||||
scale_factor: Coordinate scaling factor
|
||||
|
||||
Returns:
|
||||
Estimated font size in points
|
||||
"""
|
||||
if len(bbox) < 4:
|
||||
return 12.0 # Default font size
|
||||
|
||||
# Calculate bbox height (average of left and right edges)
|
||||
left_height = math.dist(bbox[0], bbox[3])
|
||||
right_height = math.dist(bbox[1], bbox[2])
|
||||
avg_height = (left_height + right_height) / 2
|
||||
|
||||
# Apply scale factor and font size ratio
|
||||
font_size = avg_height * scale_factor * self.FONT_SIZE_FACTOR
|
||||
|
||||
# Clamp to reasonable range
|
||||
font_size = max(self.MIN_FONT_SIZE, min(self.MAX_FONT_SIZE, font_size))
|
||||
|
||||
if self.debug:
|
||||
logger.debug(f"Font size estimation: bbox_h={avg_height:.1f}, "
|
||||
f"scale={scale_factor:.3f}, font={font_size:.1f}pt")
|
||||
|
||||
return font_size
|
||||
|
||||
def get_bbox_center(self, bbox: List[List[float]]) -> Tuple[float, float]:
|
||||
"""
|
||||
Calculate the center point of a bbox quadrilateral.
|
||||
|
||||
Args:
|
||||
bbox: List of 4 [x, y] coordinate pairs
|
||||
|
||||
Returns:
|
||||
Tuple of (center_x, center_y)
|
||||
"""
|
||||
if len(bbox) < 4:
|
||||
return (0.0, 0.0)
|
||||
|
||||
center_x = sum(p[0] for p in bbox) / 4
|
||||
center_y = sum(p[1] for p in bbox) / 4
|
||||
return (center_x, center_y)
|
||||
|
||||
def get_bbox_as_rect(self, bbox: List[List[float]]) -> Tuple[float, float, float, float]:
|
||||
"""
|
||||
Convert quadrilateral bbox to axis-aligned rectangle (x0, y0, x1, y1).
|
||||
|
||||
Args:
|
||||
bbox: List of 4 [x, y] coordinate pairs
|
||||
|
||||
Returns:
|
||||
Tuple of (x0, y0, x1, y1) - min/max coordinates
|
||||
"""
|
||||
if len(bbox) < 4:
|
||||
return (0.0, 0.0, 0.0, 0.0)
|
||||
|
||||
x_coords = [p[0] for p in bbox]
|
||||
y_coords = [p[1] for p in bbox]
|
||||
return (min(x_coords), min(y_coords), max(x_coords), max(y_coords))
|
||||
|
||||
def get_bbox_left_baseline(
|
||||
self,
|
||||
bbox: List[List[float]]
|
||||
) -> Tuple[float, float]:
|
||||
"""
|
||||
Get the left baseline point for text rendering.
|
||||
|
||||
For left-aligned text, we use the bottom-left corner as the
|
||||
baseline starting point (text baseline is at the bottom).
|
||||
|
||||
Args:
|
||||
bbox: List of 4 [x, y] coordinate pairs
|
||||
|
||||
Returns:
|
||||
Tuple of (x, y) for the left baseline point
|
||||
"""
|
||||
if len(bbox) < 4:
|
||||
return (0.0, 0.0)
|
||||
|
||||
# Use bottom-left corner for baseline
|
||||
# bbox[3] is bottom-left in the standard ordering
|
||||
x = bbox[3][0]
|
||||
y = bbox[3][1]
|
||||
|
||||
return (x, y)
|
||||
|
||||
def calculate_ioa(
|
||||
self,
|
||||
text_rect: Tuple[float, float, float, float],
|
||||
image_rect: Tuple[float, float, float, float]
|
||||
) -> float:
|
||||
"""
|
||||
Calculate Intersection over Area (IoA) of text bbox with image bbox.
|
||||
|
||||
IoA = intersection_area / text_area
|
||||
|
||||
This measures how much of the text region overlaps with the image.
|
||||
|
||||
Args:
|
||||
text_rect: Text bbox as (x0, y0, x1, y1)
|
||||
image_rect: Image bbox as (x0, y0, x1, y1)
|
||||
|
||||
Returns:
|
||||
IoA ratio (0.0 to 1.0)
|
||||
"""
|
||||
tx0, ty0, tx1, ty1 = text_rect
|
||||
ix0, iy0, ix1, iy1 = image_rect
|
||||
|
||||
# Calculate text area
|
||||
text_area = (tx1 - tx0) * (ty1 - ty0)
|
||||
if text_area <= 0:
|
||||
return 0.0
|
||||
|
||||
# Calculate intersection
|
||||
inter_x0 = max(tx0, ix0)
|
||||
inter_y0 = max(ty0, iy0)
|
||||
inter_x1 = min(tx1, ix1)
|
||||
inter_y1 = min(ty1, iy1)
|
||||
|
||||
if inter_x0 >= inter_x1 or inter_y0 >= inter_y1:
|
||||
return 0.0 # No intersection
|
||||
|
||||
inter_area = (inter_x1 - inter_x0) * (inter_y1 - inter_y0)
|
||||
return inter_area / text_area
|
||||
|
||||
def is_overlapping_exclusion_zones(
|
||||
self,
|
||||
bbox: List[List[float]],
|
||||
exclusion_zones: List[Tuple[float, float, float, float]]
|
||||
) -> bool:
|
||||
"""
|
||||
Check if text bbox overlaps significantly with any exclusion zone.
|
||||
|
||||
Args:
|
||||
bbox: Text bbox as quadrilateral
|
||||
exclusion_zones: List of (x0, y0, x1, y1) rectangles to avoid
|
||||
|
||||
Returns:
|
||||
True if text should be skipped due to overlap
|
||||
"""
|
||||
if not exclusion_zones:
|
||||
return False
|
||||
|
||||
text_rect = self.get_bbox_as_rect(bbox)
|
||||
|
||||
for zone in exclusion_zones:
|
||||
ioa = self.calculate_ioa(text_rect, zone)
|
||||
if ioa >= self.ioa_threshold:
|
||||
if self.debug:
|
||||
logger.debug(f"Text overlaps exclusion zone: IoA={ioa:.2f} >= {self.ioa_threshold}")
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def is_inside_zone(
|
||||
self,
|
||||
bbox: List[List[float]],
|
||||
zone: Tuple[float, float, float, float],
|
||||
threshold: float = 0.5
|
||||
) -> bool:
|
||||
"""
|
||||
Check if text bbox is inside a zone (for collecting chart texts).
|
||||
|
||||
Args:
|
||||
bbox: Text bbox as quadrilateral
|
||||
zone: Zone as (x0, y0, x1, y1) rectangle
|
||||
threshold: Minimum IoA to consider "inside"
|
||||
|
||||
Returns:
|
||||
True if text is inside the zone
|
||||
"""
|
||||
text_rect = self.get_bbox_as_rect(bbox)
|
||||
ioa = self.calculate_ioa(text_rect, zone)
|
||||
return ioa >= threshold
|
||||
|
||||
def is_axis_label(
|
||||
self,
|
||||
bbox: List[List[float]],
|
||||
zone: Tuple[float, float, float, float],
|
||||
margin: float = 50.0
|
||||
) -> bool:
|
||||
"""
|
||||
Check if text bbox is an axis label for a chart/image zone.
|
||||
|
||||
Axis labels are typically:
|
||||
- Vertical text to the LEFT of the chart (Y-axis label)
|
||||
- Horizontal text BELOW the chart (X-axis label)
|
||||
|
||||
Args:
|
||||
bbox: Text bbox as quadrilateral
|
||||
zone: Chart/image zone as (x0, y0, x1, y1) rectangle
|
||||
margin: Maximum distance from zone edge to be considered axis label
|
||||
|
||||
Returns:
|
||||
True if text appears to be an axis label for this zone
|
||||
"""
|
||||
if len(bbox) < 4:
|
||||
return False
|
||||
|
||||
text_rect = self.get_bbox_as_rect(bbox)
|
||||
tx0, ty0, tx1, ty1 = text_rect
|
||||
zx0, zy0, zx1, zy1 = zone
|
||||
|
||||
# Calculate text dimensions
|
||||
text_width = tx1 - tx0
|
||||
text_height = ty1 - ty0
|
||||
|
||||
# Check for Y-axis label: vertical text to the LEFT of zone
|
||||
# - Text is to the left of zone (tx1 <= zx0 + small overlap)
|
||||
# - Text's Y range overlaps with zone's Y range
|
||||
# - Text is taller than wide (aspect ratio > 2) OR very narrow
|
||||
is_left_of_zone = tx1 <= zx0 + margin and tx1 >= zx0 - margin
|
||||
y_overlaps = not (ty1 < zy0 or ty0 > zy1)
|
||||
is_vertical_text = text_height > text_width * 2
|
||||
|
||||
if is_left_of_zone and y_overlaps and is_vertical_text:
|
||||
if self.debug:
|
||||
logger.debug(f"Detected Y-axis label: text is left of zone, vertical")
|
||||
return True
|
||||
|
||||
# Check for X-axis label: horizontal text BELOW the zone
|
||||
# - Text is below zone (ty0 >= zy1 - small overlap)
|
||||
# - Text's X range overlaps with zone's X range
|
||||
# - Text is wider than tall (normal horizontal text)
|
||||
is_below_zone = ty0 >= zy1 - margin and ty0 <= zy1 + margin
|
||||
x_overlaps = not (tx1 < zx0 or tx0 > zx1)
|
||||
is_horizontal_text = text_width > text_height
|
||||
|
||||
if is_below_zone and x_overlaps and is_horizontal_text:
|
||||
if self.debug:
|
||||
logger.debug(f"Detected X-axis label: text is below zone, horizontal")
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def is_near_zone(
|
||||
self,
|
||||
bbox: List[List[float]],
|
||||
zone: Tuple[float, float, float, float],
|
||||
margin: float = 100.0
|
||||
) -> bool:
|
||||
"""
|
||||
Check if text bbox is near (within margin) of a zone.
|
||||
|
||||
Args:
|
||||
bbox: Text bbox as quadrilateral
|
||||
zone: Zone as (x0, y0, x1, y1) rectangle
|
||||
margin: Maximum distance from zone to be considered "near"
|
||||
|
||||
Returns:
|
||||
True if text is near the zone
|
||||
"""
|
||||
if len(bbox) < 4:
|
||||
return False
|
||||
|
||||
text_rect = self.get_bbox_as_rect(bbox)
|
||||
tx0, ty0, tx1, ty1 = text_rect
|
||||
zx0, zy0, zx1, zy1 = zone
|
||||
|
||||
# Expand zone by margin
|
||||
expanded_zone = (zx0 - margin, zy0 - margin, zx1 + margin, zy1 + margin)
|
||||
|
||||
# Check if text overlaps with expanded zone
|
||||
ex0, ey0, ex1, ey1 = expanded_zone
|
||||
return not (tx1 < ex0 or tx0 > ex1 or ty1 < ey0 or ty0 > ey1)
|
||||
|
||||
def collect_zone_texts(
|
||||
self,
|
||||
regions: List[Dict],
|
||||
zones: List[Tuple[float, float, float, float]],
|
||||
threshold: float = 0.5,
|
||||
include_axis_labels: bool = True
|
||||
) -> Set[str]:
|
||||
"""
|
||||
Collect text content from regions inside zones or identified as axis labels.
|
||||
|
||||
This set is used during rendering for position-aware deduplication:
|
||||
- Text that matches this set AND is near a zone will be skipped
|
||||
- Text that matches but is far from zones will still be rendered
|
||||
|
||||
Args:
|
||||
regions: List of raw OCR region dicts
|
||||
zones: List of (x0, y0, x1, y1) rectangles (e.g., chart bboxes)
|
||||
threshold: Minimum IoA to consider text as "inside" zone
|
||||
include_axis_labels: Also collect axis labels adjacent to zones
|
||||
|
||||
Returns:
|
||||
Set of text strings found inside zones or as axis labels
|
||||
"""
|
||||
zone_texts = set()
|
||||
|
||||
for region in regions:
|
||||
text = region.get('text', '').strip()
|
||||
bbox = region.get('bbox', [])
|
||||
|
||||
if not text or len(bbox) < 4:
|
||||
continue
|
||||
|
||||
for zone in zones:
|
||||
# Check if inside zone
|
||||
if self.is_inside_zone(bbox, zone, threshold):
|
||||
zone_texts.add(text)
|
||||
if self.debug:
|
||||
logger.debug(f"Collected zone text (inside): '{text}'")
|
||||
break
|
||||
|
||||
# Check if it's an axis label
|
||||
if include_axis_labels and self.is_axis_label(bbox, zone):
|
||||
zone_texts.add(text)
|
||||
if self.debug:
|
||||
logger.debug(f"Collected zone text (axis label): '{text}'")
|
||||
break
|
||||
|
||||
return zone_texts
|
||||
|
||||
def render_text_region(
|
||||
self,
|
||||
pdf_canvas: canvas.Canvas,
|
||||
region: Dict,
|
||||
page_height: float,
|
||||
scale_x: float = 1.0,
|
||||
scale_y: float = 1.0,
|
||||
exclusion_zones: List[Tuple[float, float, float, float]] = None,
|
||||
zone_texts: Set[str] = None
|
||||
) -> Tuple[bool, str]:
|
||||
"""
|
||||
Render a single OCR text region to the PDF canvas.
|
||||
|
||||
Handles coordinate transformation from image coordinates (origin top-left)
|
||||
to PDF coordinates (origin bottom-left).
|
||||
|
||||
Small rotation angles are straightened to produce clean output.
|
||||
Text overlapping with exclusion zones (images) is skipped.
|
||||
|
||||
Deduplication logic (position-aware):
|
||||
- If text matches zone_texts AND is NEAR the zone (or is axis label),
|
||||
skip it to avoid duplicate chart labels
|
||||
- Text far from zones is rendered even if it matches zone content
|
||||
|
||||
Args:
|
||||
pdf_canvas: ReportLab canvas to draw on
|
||||
region: Raw OCR region dict with 'text' and 'bbox'
|
||||
page_height: Height of the PDF page (for Y-flip)
|
||||
scale_x: X coordinate scaling factor
|
||||
scale_y: Y coordinate scaling factor
|
||||
exclusion_zones: List of (x0, y0, x1, y1) rectangles to avoid
|
||||
zone_texts: Set of zone-internal texts (dedupe only if near zone)
|
||||
|
||||
Returns:
|
||||
Tuple of (success: bool, skip_reason: str)
|
||||
- success=True, skip_reason='' if rendered successfully
|
||||
- success=False, skip_reason='overlap'/'dedupe'/'error'/'' if skipped
|
||||
"""
|
||||
text = region.get('text', '').strip()
|
||||
bbox = region.get('bbox', [])
|
||||
|
||||
if not text or len(bbox) < 4:
|
||||
return (False, '')
|
||||
|
||||
# Check if text overlaps with exclusion zones (images/charts)
|
||||
if exclusion_zones and self.is_overlapping_exclusion_zones(bbox, exclusion_zones):
|
||||
if self.debug:
|
||||
logger.debug(f"Skipping text '{text[:20]}...' due to exclusion zone overlap")
|
||||
return (False, 'overlap')
|
||||
|
||||
# Check if text should be deduplicated based on position
|
||||
# Only skip if text matches zone content AND is near a zone (or is axis label)
|
||||
if zone_texts and text in zone_texts and exclusion_zones:
|
||||
for zone in exclusion_zones:
|
||||
# Check if it's an axis label for this zone
|
||||
if self.is_axis_label(bbox, zone):
|
||||
if self.debug:
|
||||
logger.debug(f"Skipping text '{text[:20]}...' - axis label for zone")
|
||||
return (False, 'dedupe')
|
||||
# Check if it's near this zone (for zone-internal text deduplication)
|
||||
if self.is_near_zone(bbox, zone, margin=100.0):
|
||||
if self.debug:
|
||||
logger.debug(f"Skipping text '{text[:20]}...' - matches zone text and is near zone")
|
||||
return (False, 'dedupe')
|
||||
|
||||
try:
|
||||
# Calculate text properties
|
||||
rotation = self.calculate_rotation(bbox)
|
||||
font_size = self.estimate_font_size(bbox, text, scale_y)
|
||||
|
||||
# Straighten small rotations for cleaner output
|
||||
# Only apply rotation for significant angles (e.g., 90° rotated text)
|
||||
if abs(rotation) < self.straighten_threshold:
|
||||
rotation = 0.0
|
||||
|
||||
# Get left baseline point in image coordinates
|
||||
img_x, img_y = self.get_bbox_left_baseline(bbox)
|
||||
|
||||
# Apply scaling
|
||||
scaled_x = img_x * scale_x
|
||||
scaled_y = img_y * scale_y
|
||||
|
||||
# Convert to PDF coordinates (flip Y axis)
|
||||
pdf_x = scaled_x
|
||||
pdf_y = page_height - scaled_y
|
||||
|
||||
# Save canvas state
|
||||
pdf_canvas.saveState()
|
||||
|
||||
# Try to set font with fallback
|
||||
try:
|
||||
pdf_canvas.setFont(self.font_name, font_size)
|
||||
except KeyError:
|
||||
# Font not registered, try fallback fonts
|
||||
fallback_fonts = ['Helvetica', 'Times-Roman', 'Courier']
|
||||
font_set = False
|
||||
for fallback in fallback_fonts:
|
||||
try:
|
||||
pdf_canvas.setFont(fallback, font_size)
|
||||
font_set = True
|
||||
if self.debug:
|
||||
logger.debug(f"Using fallback font: {fallback}")
|
||||
break
|
||||
except KeyError:
|
||||
continue
|
||||
if not font_set:
|
||||
logger.warning(f"No available font found, skipping region")
|
||||
pdf_canvas.restoreState()
|
||||
return (False, 'error')
|
||||
|
||||
pdf_canvas.setFillColor(black)
|
||||
|
||||
# Apply rotation if needed (only for significant angles like 90°)
|
||||
if abs(rotation) > 0.5:
|
||||
pdf_canvas.translate(pdf_x, pdf_y)
|
||||
pdf_canvas.rotate(rotation)
|
||||
pdf_canvas.drawString(0, 0, text)
|
||||
else:
|
||||
pdf_canvas.drawString(pdf_x, pdf_y, text)
|
||||
|
||||
# Restore canvas state
|
||||
pdf_canvas.restoreState()
|
||||
|
||||
if self.debug:
|
||||
logger.debug(f"Rendered text '{text[:20]}...' at ({pdf_x:.1f}, {pdf_y:.1f}), "
|
||||
f"rot={rotation:.1f}°, size={font_size:.1f}pt")
|
||||
|
||||
return (True, '')
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to render text region: {e}")
|
||||
return (False, 'error')
|
||||
|
||||
def render_all_regions(
|
||||
self,
|
||||
pdf_canvas: canvas.Canvas,
|
||||
regions: List[Dict],
|
||||
page_height: float,
|
||||
scale_x: float = 1.0,
|
||||
scale_y: float = 1.0,
|
||||
page_filter: Optional[int] = None,
|
||||
exclusion_zones: List[Tuple[float, float, float, float]] = None,
|
||||
zone_texts: Set[str] = None
|
||||
) -> int:
|
||||
"""
|
||||
Render all OCR text regions to the PDF canvas.
|
||||
|
||||
Args:
|
||||
pdf_canvas: ReportLab canvas to draw on
|
||||
regions: List of raw OCR region dicts
|
||||
page_height: Height of the PDF page
|
||||
scale_x: X coordinate scaling factor
|
||||
scale_y: Y coordinate scaling factor
|
||||
page_filter: If set, only render regions for this page index
|
||||
exclusion_zones: List of (x0, y0, x1, y1) rectangles to avoid
|
||||
zone_texts: Set of zone-internal texts (for position-aware deduplication)
|
||||
|
||||
Returns:
|
||||
Number of regions successfully rendered
|
||||
"""
|
||||
rendered_count = 0
|
||||
skipped_overlap = 0
|
||||
skipped_dedupe = 0
|
||||
|
||||
for region in regions:
|
||||
# Filter by page if specified
|
||||
if page_filter is not None:
|
||||
region_page = region.get('page', 0)
|
||||
if region_page != page_filter:
|
||||
continue
|
||||
|
||||
success, skip_reason = self.render_text_region(
|
||||
pdf_canvas, region, page_height, scale_x, scale_y,
|
||||
exclusion_zones, zone_texts
|
||||
)
|
||||
|
||||
if success:
|
||||
rendered_count += 1
|
||||
elif skip_reason == 'overlap':
|
||||
skipped_overlap += 1
|
||||
elif skip_reason == 'dedupe':
|
||||
skipped_dedupe += 1
|
||||
|
||||
# Log results with skip counts
|
||||
total_processed = rendered_count + skipped_overlap + skipped_dedupe
|
||||
skip_parts = []
|
||||
if skipped_overlap > 0:
|
||||
skip_parts.append(f"{skipped_overlap} overlap")
|
||||
if skipped_dedupe > 0:
|
||||
skip_parts.append(f"{skipped_dedupe} dedupe")
|
||||
|
||||
if skip_parts:
|
||||
logger.info(f"Rendered {rendered_count}/{total_processed} text regions "
|
||||
f"(skipped: {', '.join(skip_parts)})")
|
||||
else:
|
||||
logger.info(f"Rendered {rendered_count}/{len(regions)} text regions")
|
||||
|
||||
return rendered_count
|
||||
|
||||
|
||||
def load_raw_ocr_regions(result_dir: str, task_id: str, page_num: int) -> List[Dict]:
|
||||
"""
|
||||
Load raw OCR regions from the result directory.
|
||||
|
||||
Args:
|
||||
result_dir: Path to the result directory
|
||||
task_id: Task ID
|
||||
page_num: Page number (1-indexed)
|
||||
|
||||
Returns:
|
||||
List of raw OCR region dictionaries
|
||||
"""
|
||||
from pathlib import Path
|
||||
import json
|
||||
|
||||
# Construct filename pattern
|
||||
filename = f"{task_id}_edit_page_{page_num}_raw_ocr_regions.json"
|
||||
file_path = Path(result_dir) / filename
|
||||
|
||||
if not file_path.exists():
|
||||
logger.warning(f"Raw OCR regions file not found: {file_path}")
|
||||
return []
|
||||
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
regions = json.load(f)
|
||||
logger.info(f"Loaded {len(regions)} raw OCR regions from {filename}")
|
||||
return regions
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to load raw OCR regions: {e}")
|
||||
return []
|
||||
Reference in New Issue
Block a user