feat: add contrast/sharpen strength controls, disable binarization
Major improvements to preprocessing controls: Backend: - Add contrast_strength (0.5-3.0) and sharpen_strength (0.5-2.0) to PreprocessingConfig - Auto-detection now calculates optimal strength based on image quality metrics: - Lower contrast → Higher contrast_strength - Lower edge strength → Higher sharpen_strength - Disable binarization in auto mode (rarely beneficial) - CLAHE clipLimit now scales with contrast_strength - Sharpening uses unsharp mask with variable strength Frontend: - Add strength sliders for contrast and sharpen in manual mode - Sliders show current value and strength level (輕微/正常/強/最強) - Move binarize option to collapsible "進階選項" section - Updated i18n translations for strength labels 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -116,7 +116,9 @@ def process_task_ocr(
|
||||
from app.schemas.task import PreprocessingContrastEnum
|
||||
preprocess_config_obj = PreprocessingConfig(
|
||||
contrast=PreprocessingContrastEnum(preprocessing_config.get("contrast", "clahe")),
|
||||
contrast_strength=preprocessing_config.get("contrast_strength", 1.0),
|
||||
sharpen=preprocessing_config.get("sharpen", True),
|
||||
sharpen_strength=preprocessing_config.get("sharpen_strength", 1.0),
|
||||
binarize=preprocessing_config.get("binarize", False)
|
||||
)
|
||||
|
||||
@@ -772,7 +774,9 @@ async def start_task(
|
||||
if options.preprocessing_config:
|
||||
preprocessing_config = {
|
||||
"contrast": options.preprocessing_config.contrast.value,
|
||||
"contrast_strength": options.preprocessing_config.contrast_strength,
|
||||
"sharpen": options.preprocessing_config.sharpen,
|
||||
"sharpen_strength": options.preprocessing_config.sharpen_strength,
|
||||
"binarize": options.preprocessing_config.binarize
|
||||
}
|
||||
logger.info(f"Preprocessing: mode={preprocessing_mode}, config={preprocessing_config}")
|
||||
|
||||
@@ -72,13 +72,25 @@ class PreprocessingConfig(BaseModel):
|
||||
default=PreprocessingContrastEnum.CLAHE,
|
||||
description="Contrast enhancement method"
|
||||
)
|
||||
contrast_strength: float = Field(
|
||||
default=1.0,
|
||||
ge=0.5,
|
||||
le=3.0,
|
||||
description="Contrast enhancement strength (0.5=subtle, 1.0=normal, 2.0=strong, 3.0=maximum)"
|
||||
)
|
||||
sharpen: bool = Field(
|
||||
default=True,
|
||||
description="Enable sharpening for faint lines"
|
||||
)
|
||||
sharpen_strength: float = Field(
|
||||
default=1.0,
|
||||
ge=0.5,
|
||||
le=2.0,
|
||||
description="Sharpening strength (0.5=subtle, 1.0=normal, 1.5=strong, 2.0=maximum)"
|
||||
)
|
||||
binarize: bool = Field(
|
||||
default=False,
|
||||
description="Enable binarization (aggressive, for very low contrast)"
|
||||
description="Enable binarization (aggressive, for very low contrast). Not recommended for most documents."
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -110,34 +110,61 @@ class LayoutPreprocessingService:
|
||||
"""
|
||||
Determine optimal preprocessing config based on image quality.
|
||||
|
||||
Auto-detection calculates appropriate strength values:
|
||||
- Lower image contrast → Higher contrast_strength
|
||||
- Lower edge strength → Higher sharpen_strength
|
||||
- Binarization is disabled by default (rarely beneficial)
|
||||
|
||||
Args:
|
||||
metrics: Image quality metrics from analyze_image_quality()
|
||||
|
||||
Returns:
|
||||
PreprocessingConfig with recommended settings
|
||||
"""
|
||||
# Determine contrast enhancement
|
||||
# Determine contrast enhancement and strength
|
||||
if metrics.contrast < self.contrast_threshold:
|
||||
contrast = PreprocessingContrastEnum.CLAHE
|
||||
# Calculate strength based on how far below threshold
|
||||
# contrast=40 threshold, contrast=20 → strength=2.0, contrast=30 → strength=1.5
|
||||
contrast_ratio = (self.contrast_threshold - metrics.contrast) / self.contrast_threshold
|
||||
contrast_strength = min(1.0 + contrast_ratio * 2.0, 3.0) # Range: 1.0 to 3.0
|
||||
else:
|
||||
contrast = PreprocessingContrastEnum.NONE
|
||||
contrast_strength = 1.0
|
||||
|
||||
# Determine sharpening
|
||||
sharpen = metrics.edge_strength < self.edge_threshold
|
||||
# Determine sharpening and strength
|
||||
if metrics.edge_strength < self.edge_threshold:
|
||||
sharpen = True
|
||||
# Calculate strength based on how far below threshold
|
||||
# edge=15 threshold, edge=5 → strength=1.67, edge=10 → strength=1.33
|
||||
edge_ratio = (self.edge_threshold - metrics.edge_strength) / self.edge_threshold
|
||||
sharpen_strength = min(1.0 + edge_ratio * 1.0, 2.0) # Range: 1.0 to 2.0
|
||||
else:
|
||||
sharpen = False
|
||||
sharpen_strength = 1.0
|
||||
|
||||
# Determine binarization (only for very low contrast)
|
||||
binarize = metrics.contrast < self.binarize_threshold
|
||||
# Binarization is disabled by default - it rarely helps and often hurts
|
||||
# Only enable for extremely low contrast (< 15) which indicates a scan quality issue
|
||||
binarize = False # Disabled by default
|
||||
|
||||
logger.debug(
|
||||
f"Auto config: contrast={contrast} strength={contrast_strength:.2f}, "
|
||||
f"sharpen={sharpen} strength={sharpen_strength:.2f}, binarize={binarize}"
|
||||
)
|
||||
|
||||
return PreprocessingConfig(
|
||||
contrast=contrast,
|
||||
contrast_strength=round(contrast_strength, 2),
|
||||
sharpen=sharpen,
|
||||
sharpen_strength=round(sharpen_strength, 2),
|
||||
binarize=binarize
|
||||
)
|
||||
|
||||
def apply_contrast_enhancement(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
method: PreprocessingContrastEnum
|
||||
method: PreprocessingContrastEnum,
|
||||
strength: float = 1.0
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Apply contrast enhancement to image.
|
||||
@@ -145,6 +172,11 @@ class LayoutPreprocessingService:
|
||||
Args:
|
||||
image: Input image (BGR)
|
||||
method: Enhancement method (none, histogram, clahe)
|
||||
strength: Enhancement strength (0.5-3.0, default 1.0)
|
||||
- 0.5: Subtle enhancement
|
||||
- 1.0: Normal enhancement
|
||||
- 2.0: Strong enhancement
|
||||
- 3.0: Maximum enhancement
|
||||
|
||||
Returns:
|
||||
Enhanced image (BGR)
|
||||
@@ -157,12 +189,17 @@ class LayoutPreprocessingService:
|
||||
l_channel, a_channel, b_channel = cv2.split(lab)
|
||||
|
||||
if method == PreprocessingContrastEnum.HISTOGRAM:
|
||||
# Standard histogram equalization
|
||||
l_enhanced = cv2.equalizeHist(l_channel)
|
||||
# Standard histogram equalization (strength affects blending)
|
||||
l_equalized = cv2.equalizeHist(l_channel)
|
||||
# Blend original with equalized based on strength
|
||||
alpha = min(strength, 1.0) # Cap at 1.0 for histogram
|
||||
l_enhanced = cv2.addWeighted(l_equalized, alpha, l_channel, 1 - alpha, 0)
|
||||
elif method == PreprocessingContrastEnum.CLAHE:
|
||||
# Contrast Limited Adaptive Histogram Equalization
|
||||
# clipLimit controls contrast amplification: 2.0 is default, up to 6.0 for strong
|
||||
clip_limit = self.clahe_clip_limit * strength # 2.0 * 1.0 = 2.0, 2.0 * 2.0 = 4.0
|
||||
clahe = cv2.createCLAHE(
|
||||
clipLimit=self.clahe_clip_limit,
|
||||
clipLimit=clip_limit,
|
||||
tileGridSize=self.clahe_tile_grid_size
|
||||
)
|
||||
l_enhanced = clahe.apply(l_channel)
|
||||
@@ -175,18 +212,33 @@ class LayoutPreprocessingService:
|
||||
|
||||
return enhanced_bgr
|
||||
|
||||
def apply_sharpening(self, image: np.ndarray) -> np.ndarray:
|
||||
def apply_sharpening(self, image: np.ndarray, strength: float = 1.0) -> np.ndarray:
|
||||
"""
|
||||
Apply sharpening to enhance edges and faint lines.
|
||||
Apply sharpening to enhance edges and faint lines using unsharp mask.
|
||||
|
||||
Args:
|
||||
image: Input image (BGR)
|
||||
strength: Sharpening strength (0.5-2.0, default 1.0)
|
||||
- 0.5: Subtle sharpening
|
||||
- 1.0: Normal sharpening
|
||||
- 1.5: Strong sharpening
|
||||
- 2.0: Maximum sharpening
|
||||
|
||||
Returns:
|
||||
Sharpened image (BGR)
|
||||
"""
|
||||
# Apply unsharp mask style sharpening
|
||||
sharpened = cv2.filter2D(image, -1, self.sharpen_kernel)
|
||||
# Use unsharp mask technique for better control
|
||||
# 1. Create blurred version
|
||||
# 2. Subtract from original (scaled by strength)
|
||||
# 3. Add back to original
|
||||
|
||||
# Gaussian blur with sigma based on strength
|
||||
sigma = 1.0
|
||||
blurred = cv2.GaussianBlur(image, (0, 0), sigma)
|
||||
|
||||
# Unsharp mask: original + (original - blurred) * strength
|
||||
# This is equivalent to: original * (1 + strength) - blurred * strength
|
||||
sharpened = cv2.addWeighted(image, 1.0 + strength, blurred, -strength, 0)
|
||||
|
||||
# Clip values to valid range
|
||||
sharpened = np.clip(sharpened, 0, 255).astype(np.uint8)
|
||||
@@ -277,15 +329,19 @@ class LayoutPreprocessingService:
|
||||
|
||||
# Step 1: Contrast enhancement
|
||||
if config.contrast != PreprocessingContrastEnum.NONE:
|
||||
processed = self.apply_contrast_enhancement(processed, config.contrast)
|
||||
processed = self.apply_contrast_enhancement(
|
||||
processed,
|
||||
config.contrast,
|
||||
strength=config.contrast_strength
|
||||
)
|
||||
was_processed = True
|
||||
logger.debug(f"Applied contrast enhancement: {config.contrast}")
|
||||
logger.debug(f"Applied contrast enhancement: {config.contrast} (strength={config.contrast_strength})")
|
||||
|
||||
# Step 2: Sharpening
|
||||
if config.sharpen:
|
||||
processed = self.apply_sharpening(processed)
|
||||
processed = self.apply_sharpening(processed, strength=config.sharpen_strength)
|
||||
was_processed = True
|
||||
logger.debug("Applied sharpening")
|
||||
logger.debug(f"Applied sharpening (strength={config.sharpen_strength})")
|
||||
|
||||
# Step 3: Binarization (last step, overwrites color)
|
||||
if config.binarize:
|
||||
|
||||
Reference in New Issue
Block a user