diff --git a/backend/test_all_regions.py b/backend/test_all_regions.py
deleted file mode 100644
index c630ab6..0000000
--- a/backend/test_all_regions.py
+++ /dev/null
@@ -1,144 +0,0 @@
-#!/usr/bin/env python
-"""
-測試 calculate_page_dimensions 是否正確檢查所有可能的區域
-包括: text_regions, image_regions, tables, layout, layout_data.elements
-"""
-
-import json
-from pathlib import Path
-from app.services.pdf_generator_service import pdf_generator_service
-import logging
-
-# Set up logging
-logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
-
-def test_all_region_types():
- """
- 測試場景:
- - layout: [] (空列表)
- - text_regions: 包含文字區域
- - image_regions: 包含圖片區域 (關鍵!)
- - tables: 包含表格區域 (關鍵!)
- """
-
- test_dir = Path("test_output_all_regions")
- test_dir.mkdir(exist_ok=True)
-
- print("\n" + "="*70)
- print("測試場景:檢查所有區域類型 (text, image, table)")
- print("="*70)
-
- # 模擬包含所有區域類型的 JSON
- mock_ocr_data = {
- "status": "success",
- "file_name": "complete_document.pdf",
- "language": "ch",
- "layout": [], # 空列表
- "text_regions": [
- {
- "text": "標題文字",
- "bbox": [[461, 270], [819, 270], [819, 408], [461, 408]],
- "confidence": 0.95
- },
- {
- "text": "內容文字",
- "bbox": [[1521, 936], [1850, 936], [1850, 1020], [1521, 1020]],
- "confidence": 0.93
- }
- ],
- "image_regions": [
- {
- "type": "figure",
- "bbox": [[1434, 1500], [2204, 1500], [2204, 2100], [1434, 2100]], # 圖片在右下角
- "image_path": "imgs/figure_1.jpg"
- },
- {
- "type": "chart",
- "bbox": [[200, 2200], [800, 2200], [800, 2800], [200, 2800]],
- "image_path": "imgs/chart_1.jpg"
- }
- ],
- "tables": [
- {
- "type": "table",
- "bbox": [[300, 3000], [1900, 3000], [1900, 3500], [300, 3500]], # 表格在底部
- "html": "
"
- }
- ],
- "total_text_regions": 2,
- "average_confidence": 0.94,
- "layout_data": None,
- "images_metadata": [],
- "markdown_content": "標題文字\n內容文字",
- "processing_time": 4.5,
- "timestamp": "2025-11-17T00:00:00"
- }
-
- # Save mock JSON
- json_path = test_dir / "all_regions_test.json"
- with open(json_path, "w", encoding="utf-8") as f:
- json.dump(mock_ocr_data, f, ensure_ascii=False, indent=2)
-
- print(f"\n✓ 創建測試 JSON: {json_path}")
- print(f" - layout: [] (空列表)")
- print(f" - text_regions: 2 個區域 (max X=1850)")
- print(f" - image_regions: 2 個區域 (max X=2204) *** 關鍵!")
- print(f" - tables: 1 個區域 (max Y=3500) *** 關鍵!")
- print(f" - 預期 OCR 尺寸: ~2204 x ~3500 (取自所有區域的最大值)")
-
- # Create A4 source PDF
- from reportlab.pdfgen import canvas
- from reportlab.lib.pagesizes import A4
-
- source_pdf = test_dir / "source_a4.pdf"
- c = canvas.Canvas(str(source_pdf), pagesize=A4)
- c.drawString(100, 800, "Original A4 Document")
- c.save()
-
- print(f"✓ 創建 A4 源文件: {source_pdf}")
- print(f" - A4 尺寸: 595 x 842 點")
-
- # Test PDF generation
- pdf_path = test_dir / "output_all_regions.pdf"
-
- print(f"\n開始生成 PDF...")
- print("-" * 70)
-
- success = pdf_generator_service.generate_layout_pdf(
- json_path=json_path,
- output_path=pdf_path,
- source_file_path=source_pdf
- )
-
- print("-" * 70)
-
- if success:
- print(f"\n✓ PDF 生成成功: {pdf_path}")
- print(f"\n預期結果:")
- print(f" - OCR 尺寸(從所有區域推斷): ~2204 x ~3500")
- print(f" - 目標 PDF 尺寸: 595 x 842")
- print(f" - 預期縮放因子: X={595/2204:.3f}, Y={842/3500:.3f}")
- print(f"\n關鍵驗證:")
- print(f" - 如果只檢查 text_regions,max_x 只有 1850 (錯誤!)")
- print(f" - 必須檢查 image_regions 才能得到正確的 max_x=2204")
- print(f" - 必須檢查 tables 才能得到正確的 max_y=3500")
- return True
- else:
- print(f"\n✗ PDF 生成失敗")
- return False
-
-if __name__ == "__main__":
- import sys
- sys.path.insert(0, str(Path(__file__).parent))
-
- success = test_all_region_types()
-
- print("\n" + "="*70)
- if success:
- print("✓ 測試通過!所有區域類型都被正確檢查")
- print("="*70)
- sys.exit(0)
- else:
- print("✗ 測試失敗")
- print("="*70)
- sys.exit(1)
\ No newline at end of file
diff --git a/backend/test_bbox_scaling.py b/backend/test_bbox_scaling.py
deleted file mode 100644
index 5284628..0000000
--- a/backend/test_bbox_scaling.py
+++ /dev/null
@@ -1,130 +0,0 @@
-#!/usr/bin/env python
-"""
-Test script for PDF generation with proper bbox-based dimension calculation
-Simulates the real scenario where OCR processes on high-res images (e.g., 2189x3500)
-but we want to generate PDFs at original size (e.g., A4: 595x842)
-"""
-
-import json
-from pathlib import Path
-from app.services.pdf_generator_service import pdf_generator_service
-import logging
-
-# Set up logging to see dimension calculations
-logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
-
-def test_high_res_ocr_to_a4_pdf():
- """
- Test the scenario user described:
- - PaddleOCR processes PDF at high resolution (2189x3500)
- - OCR bbox coordinates are in this high-res space
- - We want to generate A4 PDF (595x842)
- - Scale factors should be ~0.27 and ~0.24
- """
-
- # Create test directory
- test_dir = Path("test_output_bbox")
- test_dir.mkdir(exist_ok=True)
-
- print("\n" + "="*70)
- print("測試場景:高解析度 OCR → A4 PDF 縮放")
- print("="*70)
-
- # Create mock OCR data with high-res bbox coordinates
- # Simulating text at various positions in the 2189x3500 coordinate space
- mock_ocr_data = {
- "status": "success",
- "file_name": "test_document.pdf",
- "language": "ch",
- "text_regions": [
- {
- "text": "標題文字在頂部",
- "bbox": [[230, 195], [1189, 182], [1189, 350], [230, 363]], # Top of page
- "confidence": 0.95
- },
- {
- "text": "中間的文字內容",
- "bbox": [[1521, 1750], [2185, 1750], [2185, 1820], [1521, 1820]], # Middle
- "confidence": 0.92
- },
- {
- "text": "底部的文字",
- "bbox": [[400, 3200], [1200, 3200], [1200, 3280], [400, 3280]], # Bottom
- "confidence": 0.93
- }
- ],
- "total_text_regions": 3,
- "average_confidence": 0.933,
- "layout_data": None,
- "images_metadata": [],
- "markdown_content": "# Test Document\n\n標題文字在頂部\n中間的文字內容\n底部的文字",
- "processing_time": 2.5,
- "timestamp": "2025-11-17T00:00:00"
- }
-
- # Save mock JSON
- json_path = test_dir / "high_res_ocr_result.json"
- with open(json_path, "w", encoding="utf-8") as f:
- json.dump(mock_ocr_data, f, ensure_ascii=False, indent=2)
-
- print(f"\n✓ 創建測試 JSON: {json_path}")
- print(f" - OCR 座標範圍: X=[230..2185], Y=[182..3280]")
- print(f" - 預期 OCR 尺寸: ~2185 x ~3280")
-
- # Create a mock A4 source PDF for target dimensions
- from PIL import Image
- from reportlab.lib.pagesizes import A4
-
- # Create dummy source image at A4 size (595x842 points)
- source_pdf = test_dir / "source_a4.pdf"
-
- # For this test, we'll create a simple PDF using reportlab
- from reportlab.pdfgen import canvas
- c = canvas.Canvas(str(source_pdf), pagesize=A4)
- c.drawString(100, 800, "Original A4 Document")
- c.save()
-
- print(f"✓ 創建 A4 源文件: {source_pdf}")
- print(f" - A4 尺寸: 595 x 842 點")
-
- # Test PDF generation
- pdf_path = test_dir / "scaled_output.pdf"
-
- print(f"\n開始生成 PDF...")
- print("-" * 70)
-
- success = pdf_generator_service.generate_layout_pdf(
- json_path=json_path,
- output_path=pdf_path,
- source_file_path=source_pdf
- )
-
- print("-" * 70)
-
- if success:
- print(f"\n✓ PDF 生成成功: {pdf_path}")
- print(f"\n預期結果:")
- print(f" - OCR 尺寸: ~2185 x ~3280")
- print(f" - 目標 PDF 尺寸: 595 x 842")
- print(f" - 預期縮放因子: X={595/2185:.3f}, Y={842/3280:.3f}")
- print(f"\n實際結果應該與預期一致(見上方日誌)")
- return True
- else:
- print(f"\n✗ PDF 生成失敗")
- return False
-
-if __name__ == "__main__":
- import sys
- sys.path.insert(0, str(Path(__file__).parent))
-
- success = test_high_res_ocr_to_a4_pdf()
-
- print("\n" + "="*70)
- if success:
- print("✓ 測試通過!縮放邏輯正確")
- print("="*70)
- sys.exit(0)
- else:
- print("✗ 測試失敗")
- print("="*70)
- sys.exit(1)
diff --git a/backend/test_empty_layout.py b/backend/test_empty_layout.py
deleted file mode 100644
index cf205fb..0000000
--- a/backend/test_empty_layout.py
+++ /dev/null
@@ -1,130 +0,0 @@
-#!/usr/bin/env python
-"""
-測試 calculate_page_dimensions 是否正確處理 layout=[] 但 text_regions 有數據的情況
-這模擬了用戶報告的 ELER-8-100HFV Data Sheet 的場景
-"""
-
-import json
-from pathlib import Path
-from app.services.pdf_generator_service import pdf_generator_service
-import logging
-
-# Set up logging
-logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
-
-def test_empty_layout_with_text_regions():
- """
- 測試場景:
- - layout: [] (空列表)
- - text_regions: 包含高解析度 bbox 數據
- - 應該從 text_regions 推斷出正確的 OCR 尺寸
- """
-
- test_dir = Path("test_output_empty_layout")
- test_dir.mkdir(exist_ok=True)
-
- print("\n" + "="*70)
- print("測試場景:layout=[] 但 text_regions 包含數據")
- print("="*70)
-
- # 模擬用戶的 JSON 結構
- mock_ocr_data = {
- "status": "success",
- "file_name": "ELER-8-100HFV_Data_Sheet.pdf",
- "language": "ch",
- "layout": [], # *** 關鍵:這是空的 ***
- "text_regions": [
- {
- "text": "義典科技",
- "bbox": [[461, 270], [819, 252], [822, 408], [464, 426]], # 高解析度座標
- "confidence": 0.95
- },
- {
- "text": "ELER-8-100HFV",
- "bbox": [[1150, 580], [1850, 580], [1850, 680], [1150, 680]],
- "confidence": 0.93
- },
- {
- "text": "表格中的文字",
- "bbox": [[1259, 936], [1317, 936], [1317, 960], [1259, 960]], # X=1259 超出 A4 寬度
- "confidence": 0.92
- },
- {
- "text": "底部文字",
- "bbox": [[400, 2800], [1200, 2800], [1200, 2880], [400, 2880]], # Y=2880
- "confidence": 0.91
- }
- ],
- "total_text_regions": 4,
- "average_confidence": 0.928,
- "layout_data": None,
- "images_metadata": [],
- "markdown_content": "義典科技\nELER-8-100HFV\n表格中的文字\n底部文字",
- "processing_time": 3.2,
- "timestamp": "2025-11-17T00:00:00"
- }
-
- # Save mock JSON
- json_path = test_dir / "empty_layout_test.json"
- with open(json_path, "w", encoding="utf-8") as f:
- json.dump(mock_ocr_data, f, ensure_ascii=False, indent=2)
-
- print(f"\n✓ 創建測試 JSON: {json_path}")
- print(f" - layout: [] (空列表)")
- print(f" - text_regions: 4 個區域")
- print(f" - OCR 座標範圍: X=[400..1850], Y=[252..2880]")
- print(f" - 預期 OCR 尺寸: ~1850 x ~2880")
-
- # Create A4 source PDF
- from reportlab.pdfgen import canvas
- from reportlab.lib.pagesizes import A4
-
- source_pdf = test_dir / "source_a4.pdf"
- c = canvas.Canvas(str(source_pdf), pagesize=A4)
- c.drawString(100, 800, "Original A4 Document")
- c.save()
-
- print(f"✓ 創建 A4 源文件: {source_pdf}")
- print(f" - A4 尺寸: 595 x 842 點")
-
- # Test PDF generation
- pdf_path = test_dir / "output.pdf"
-
- print(f"\n開始生成 PDF...")
- print("-" * 70)
-
- success = pdf_generator_service.generate_layout_pdf(
- json_path=json_path,
- output_path=pdf_path,
- source_file_path=source_pdf
- )
-
- print("-" * 70)
-
- if success:
- print(f"\n✓ PDF 生成成功: {pdf_path}")
- print(f"\n預期結果:")
- print(f" - OCR 尺寸(從 text_regions 推斷): ~1850 x ~2880")
- print(f" - 目標 PDF 尺寸: 595 x 842")
- print(f" - 預期縮放因子: X={595/1850:.3f}, Y={842/2880:.3f}")
- print(f"\n如果實際縮放因子是 1.0,說明 Bug 仍存在!")
- return True
- else:
- print(f"\n✗ PDF 生成失敗")
- return False
-
-if __name__ == "__main__":
- import sys
- sys.path.insert(0, str(Path(__file__).parent))
-
- success = test_empty_layout_with_text_regions()
-
- print("\n" + "="*70)
- if success:
- print("✓ 測試完成")
- print("="*70)
- sys.exit(0)
- else:
- print("✗ 測試失敗")
- print("="*70)
- sys.exit(1)
diff --git a/backend/test_pdf_scaling.py b/backend/test_pdf_scaling.py
deleted file mode 100644
index 7424097..0000000
--- a/backend/test_pdf_scaling.py
+++ /dev/null
@@ -1,100 +0,0 @@
-#!/usr/bin/env python
-"""
-Test script for PDF generation with proper scaling
-"""
-
-import json
-from pathlib import Path
-from app.services.pdf_generator_service import pdf_generator_service
-
-def test_pdf_generation():
- """Test PDF generation with mock data that includes OCR dimensions"""
-
- # Create a test directory
- test_dir = Path("test_output")
- test_dir.mkdir(exist_ok=True)
-
- # Create mock OCR JSON data with OCR dimensions
- mock_ocr_data = {
- "status": "success",
- "file_name": "test_image.jpg",
- "language": "ch",
- "ocr_dimensions": {
- "width": 500, # OCR processed at 500px wide
- "height": 700 # OCR processed at 700px tall
- },
- "text_regions": [
- {
- "text": "測試文字 Test Text",
- "bbox": [[50, 100], [250, 100], [250, 150], [50, 150]],
- "confidence": 0.95
- },
- {
- "text": "第二行文字 Second line",
- "bbox": [[50, 200], [300, 200], [300, 250], [50, 250]],
- "confidence": 0.92
- }
- ],
- "total_text_regions": 2,
- "average_confidence": 0.935,
- "layout_data": None,
- "images_metadata": [],
- "markdown_content": "# Test Document\n\n測試文字 Test Text\n\n第二行文字 Second line",
- "processing_time": 1.5,
- "timestamp": "2025-11-17T00:00:00"
- }
-
- # Save mock JSON
- json_path = test_dir / "test_ocr_result.json"
- with open(json_path, "w", encoding="utf-8") as f:
- json.dump(mock_ocr_data, f, ensure_ascii=False, indent=2)
-
- print(f"Created test JSON at: {json_path}")
-
- # Test PDF generation
- pdf_path = test_dir / "test_output.pdf"
-
- # Create a dummy source file for dimensions (1000x1400 target PDF size)
- from PIL import Image
- source_image = test_dir / "test_source.jpg"
- img = Image.new('RGB', (1000, 1400), color='white')
- img.save(source_image)
- print(f"Created test source image: {source_image} (1000x1400)")
-
- # Generate PDF
- print("\nGenerating PDF with scaling...")
-
- # Set up logging to see scale factors
- import logging
- logging.basicConfig(level=logging.INFO, format='%(message)s')
-
- success = pdf_generator_service.generate_layout_pdf(
- json_path=json_path,
- output_path=pdf_path,
- source_file_path=source_image
- )
-
- if success:
- print(f"✓ PDF generated successfully: {pdf_path}")
- print(f" Expected scale factors: X={1000/500:.2f}, Y={1400/700:.2f}")
- print(" Text should now be properly scaled and positioned!")
- else:
- print("✗ PDF generation failed")
-
- return success
-
-if __name__ == "__main__":
- import sys
- sys.path.insert(0, str(Path(__file__).parent))
-
- print("Testing PDF generation with proper scaling...")
- print("=" * 60)
-
- success = test_pdf_generation()
-
- print("\n" + "=" * 60)
- if success:
- print("✓ Test completed successfully!")
- print("Check test_output/test_output.pdf to verify scaling")
- else:
- print("✗ Test failed")
\ No newline at end of file