feat: add translated PDF format selection (layout/reflow)

- Add generate_translated_layout_pdf() method for layout-preserving translated PDFs
- Add generate_translated_pdf() method for reflow translated PDFs
- Update translate router to accept format parameter (layout/reflow)
- Update frontend with dropdown to select translated PDF format
- Fix reflow PDF table cell extraction from content dict
- Add embedded images handling in reflow PDF tables
- Archive improve-translated-text-fitting openspec proposal

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
egg
2025-12-03 10:10:28 +08:00
parent 0dcea4a7e7
commit 08adf3d01d
15 changed files with 1384 additions and 1222 deletions

View File

@@ -1,842 +1,97 @@
# Tool_OCR V2 API Documentation
## Overview
Tool_OCR V2 provides a comprehensive OCR service with dual-track document processing. The API supports intelligent routing between OCR track (for scanned documents) and Direct Extraction track (for editable PDFs and Office documents).
**Base URL**: `http://localhost:8000/api/v2`
**Authentication**: Bearer token (JWT)
---
## Table of Contents
1. [Authentication](#authentication)
2. [Task Management](#task-management)
3. [Document Processing](#document-processing)
4. [Document Analysis](#document-analysis)
5. [File Downloads](#file-downloads)
6. [Processing Tracks](#processing-tracks)
7. [Response Models](#response-models)
8. [Error Handling](#error-handling)
---
## Authentication
All endpoints require authentication via Bearer token.
### Headers
```http
Authorization: Bearer <access_token>
```
### Login
```http
POST /api/auth/login
Content-Type: application/json
{
"email": "user@example.com",
"password": "password123"
}
```
**Response**:
```json
{
"access_token": "eyJhbGc...",
"token_type": "bearer",
"user": {
"id": 1,
"email": "user@example.com",
"username": "user"
}
}
```
---
## Task Management
### Create Task
Create a new OCR processing task by uploading a document.
```http
POST /tasks/
Content-Type: multipart/form-data
```
**Request Body**:
- `file` (required): Document file to process
- Supported formats: PDF, PNG, JPG, JPEG, GIF, BMP, TIFF, DOCX, PPTX, XLSX
- `language` (optional): OCR language code (default: 'ch')
- Options: 'ch', 'en', 'japan', 'korean', etc.
- `detect_layout` (optional): Enable layout detection (default: true)
- `force_track` (optional): Force specific processing track
- Options: 'ocr', 'direct', 'auto' (default: 'auto')
**Response** `201 Created`:
```json
{
"task_id": "550e8400-e29b-41d4-a716-446655440000",
"filename": "document.pdf",
"status": "pending",
"language": "ch",
"created_at": "2025-11-20T10:00:00Z"
}
```
**Processing Track Selection**:
- `auto` (default): Automatically select optimal track based on document analysis
- Editable PDFs → Direct track (faster, ~1-2s/page)
- Scanned documents/images → OCR track (slower, ~2-5s/page)
- Office documents → Convert to PDF, then route based on content
- `ocr`: Force OCR processing (PaddleOCR PP-StructureV3)
- `direct`: Force direct extraction (PyMuPDF) - only for editable PDFs
---
### List Tasks
Get a paginated list of user's tasks with filtering.
```http
GET /tasks/?status={status}&filename={search}&skip={skip}&limit={limit}
```
**Query Parameters**:
- `status` (optional): Filter by task status
- Options: `pending`, `processing`, `completed`, `failed`
- `filename` (optional): Search by filename (partial match)
- `skip` (optional): Pagination offset (default: 0)
- `limit` (optional): Page size (default: 10, max: 100)
**Response** `200 OK`:
```json
{
"tasks": [
{
"task_id": "550e8400-e29b-41d4-a716-446655440000",
"filename": "document.pdf",
"status": "completed",
"language": "ch",
"processing_track": "direct",
"processing_time": 1.14,
"created_at": "2025-11-20T10:00:00Z",
"completed_at": "2025-11-20T10:00:02Z"
}
],
"total": 42,
"skip": 0,
"limit": 10
}
```
---
### Get Task Details
Retrieve detailed information about a specific task.
```http
GET /tasks/{task_id}
```
**Response** `200 OK`:
```json
{
"task_id": "550e8400-e29b-41d4-a716-446655440000",
"filename": "document.pdf",
"status": "completed",
"language": "ch",
"processing_track": "direct",
"document_type": "pdf_editable",
"processing_time": 1.14,
"page_count": 3,
"element_count": 51,
"character_count": 10592,
"confidence": 0.95,
"created_at": "2025-11-20T10:00:00Z",
"completed_at": "2025-11-20T10:00:02Z",
"result_files": {
"json": "/tasks/550e8400-e29b-41d4-a716-446655440000/download/json",
"markdown": "/tasks/550e8400-e29b-41d4-a716-446655440000/download/markdown",
"pdf": "/tasks/550e8400-e29b-41d4-a716-446655440000/download/pdf"
},
"metadata": {
"file_size": 524288,
"mime_type": "application/pdf",
"text_coverage": 0.95,
"processing_track_reason": "PDF has extractable text on 100% of sampled pages"
}
}
```
**New Fields** (Dual-Track):
- `processing_track`: Track used for processing (`ocr`, `direct`, or `null`)
- `document_type`: Detected document type
- `pdf_editable`: Editable PDF with text
- `pdf_scanned`: Scanned/image-based PDF
- `pdf_mixed`: Mixed content PDF
- `image`: Image file
- `office_word`, `office_excel`, `office_ppt`: Office documents
- `page_count`: Number of pages extracted
- `element_count`: Total elements (text, tables, images) extracted
- `character_count`: Total characters extracted
- `metadata.text_coverage`: Percentage of pages with extractable text (0.0-1.0)
- `metadata.processing_track_reason`: Explanation of track selection
---
### Get Task Statistics
Get aggregated statistics for user's tasks.
```http
GET /tasks/stats
```
**Response** `200 OK`:
```json
{
"total_tasks": 150,
"by_status": {
"pending": 5,
"processing": 3,
"completed": 140,
"failed": 2
},
"by_processing_track": {
"ocr": 80,
"direct": 60,
"unknown": 10
},
"total_pages_processed": 4250,
"average_processing_time": 3.5,
"success_rate": 0.987
}
```
---
### Delete Task
Delete a task and all associated files.
```http
DELETE /tasks/{task_id}
```
**Response** `204 No Content`
---
## Document Processing
### Processing Workflow
1. **Upload Document**`POST /tasks/` → Returns `task_id`
2. **Background Processing** → Task status changes to `processing`
3. **Complete** → Task status changes to `completed` or `failed`
4. **Download Results** → Use download endpoints
### Track Selection Flow
```
Document Upload
Document Type Detection
┌──────────────┐
│ Auto Routing │
└──────┬───────┘
┌────┴─────┐
↓ ↓
[Direct] [OCR]
↓ ↓
PyMuPDF PaddleOCR
↓ ↓
UnifiedDocument
Export (JSON/MD/PDF)
```
**Direct Track** (Fast - 1-2s/page):
- Editable PDFs with extractable text
- Office documents (converted to text-based PDF)
- Uses PyMuPDF for direct text extraction
- Preserves exact layout and fonts
**OCR Track** (Slower - 2-5s/page):
- Scanned PDFs and images
- Documents without extractable text
- Uses PaddleOCR PP-StructureV3
- Handles complex layouts with 23 element types
---
## Document Analysis
### Analyze Document Type
Analyze a document to determine optimal processing track **before** processing.
**NEW ENDPOINT**
```http
POST /tasks/{task_id}/analyze
```
**Response** `200 OK`:
```json
{
"task_id": "550e8400-e29b-41d4-a716-446655440000",
"filename": "document.pdf",
"analysis": {
"recommended_track": "direct",
"confidence": 0.95,
"reason": "PDF has extractable text on 100% of sampled pages",
"document_type": "pdf_editable",
"metadata": {
"total_pages": 3,
"sampled_pages": 3,
"text_coverage": 1.0,
"mime_type": "application/pdf",
"file_size": 524288,
"page_details": [
{
"page": 1,
"text_length": 3520,
"has_text": true,
"image_count": 2,
"image_coverage": 0.15
}
]
}
}
}
```
**Use Case**:
- Preview processing track before starting
- Validate document type for batch processing
- Provide user feedback on processing method
---
### Get Processing Metadata
Get detailed metadata about how a document was processed.
**NEW ENDPOINT**
```http
GET /tasks/{task_id}/metadata
```
**Response** `200 OK`:
```json
{
"task_id": "550e8400-e29b-41d4-a716-446655440000",
"processing_track": "direct",
"document_type": "pdf_editable",
"confidence": 0.95,
"reason": "PDF has extractable text on 100% of sampled pages",
"statistics": {
"page_count": 3,
"element_count": 51,
"total_tables": 2,
"total_images": 3,
"element_type_counts": {
"text": 45,
"table": 2,
"image": 3,
"header": 1
},
"text_stats": {
"total_characters": 10592,
"total_words": 1842,
"average_confidence": 1.0
}
},
"processing_info": {
"processing_time": 1.14,
"track_description": "PyMuPDF Direct Extraction - Used for editable PDFs",
"schema_version": "1.0.0"
},
"file_metadata": {
"filename": "document.pdf",
"file_size": 524288,
"mime_type": "application/pdf",
"created_at": "2025-11-20T10:00:00Z"
}
}
```
---
## File Downloads
### Download JSON Result
Download structured JSON output with full document structure.
```http
GET /tasks/{task_id}/download/json
```
**Response** `200 OK`:
- Content-Type: `application/json`
- Content-Disposition: `attachment; filename="{filename}_result.json"`
**JSON Structure**:
```json
{
"schema_version": "1.0.0",
"document_id": "d8bea84d-a4ea-4455-b219-243624b5518e",
"export_timestamp": "2025-11-20T10:00:02Z",
"metadata": {
"filename": "document.pdf",
"file_type": ".pdf",
"file_size": 524288,
"created_at": "2025-11-20T10:00:00Z",
"processing_track": "direct",
"processing_time": 1.14,
"language": "ch",
"processing_info": {
"track_description": "PyMuPDF Direct Extraction",
"schema_version": "1.0.0",
"export_format": "unified_document_v1"
}
},
"pages": [
{
"page_number": 1,
"dimensions": {
"width": 595.32,
"height": 841.92
},
"elements": [
{
"element_id": "text_1_0",
"type": "text",
"bbox": {
"x0": 72.0,
"y0": 72.0,
"x1": 200.0,
"y1": 90.0
},
"content": "Document Title",
"confidence": 1.0,
"style": {
"font": "Helvetica-Bold",
"size": 18.0
}
}
]
}
],
"statistics": {
"page_count": 3,
"total_elements": 51,
"total_tables": 2,
"total_images": 3,
"element_type_counts": {
"text": 45,
"table": 2,
"image": 3,
"header": 1
},
"text_stats": {
"total_characters": 10592,
"total_words": 1842,
"average_confidence": 1.0
}
}
}
```
**Element Types**:
- `text`: Text blocks
- `header`: Headers (H1-H6)
- `paragraph`: Paragraphs
- `list`: Lists
- `table`: Tables with cell structure
- `image`: Images with position
- `figure`: Figures with captions
- `footer`: Page footers
---
### Download Markdown Result
Download Markdown formatted output.
```http
GET /tasks/{task_id}/download/markdown
```
**Response** `200 OK`:
- Content-Type: `text/markdown`
- Content-Disposition: `attachment; filename="{filename}_output.md"`
**Example Output**:
```markdown
# Document Title
This is the extracted content from the document.
## Section 1
Content of section 1...
| Column 1 | Column 2 |
|----------|----------|
| Data 1 | Data 2 |
![Image](imgs/img_in_image_box_100_200_500_600.jpg)
```
---
### Download Layout-Preserving PDF
Download reconstructed PDF with layout preservation.
```http
GET /tasks/{task_id}/download/pdf
```
**Response** `200 OK`:
- Content-Type: `application/pdf`
- Content-Disposition: `attachment; filename="{filename}_layout.pdf"`
**Features**:
- Preserves original layout and coordinates
- Maintains text positioning
- Includes extracted images
- Renders tables with proper structure
---
## Processing Tracks
### Track Comparison
| Feature | OCR Track | Direct Track |
|---------|-----------|--------------|
| **Speed** | 2-5 seconds/page | 0.5-1 second/page |
| **Best For** | Scanned documents, images | Editable PDFs, Office docs |
| **Technology** | PaddleOCR PP-StructureV3 | PyMuPDF |
| **Accuracy** | 92-98% (content-dependent) | 100% (text is extracted, not recognized) |
| **Layout Preservation** | Good (23 element types) | Excellent (exact coordinates) |
| **GPU Required** | Yes (8GB recommended) | No |
| **Supported Formats** | PDF, PNG, JPG, TIFF, etc. | PDF (with text), converted Office docs |
### Processing Track Enum
```python
class ProcessingTrackEnum(str, Enum):
AUTO = "auto" # Automatic selection (default)
OCR = "ocr" # Force OCR processing
DIRECT = "direct" # Force direct extraction
```
### Document Type Enum
```python
class DocumentType(str, Enum):
PDF_EDITABLE = "pdf_editable" # PDF with extractable text
PDF_SCANNED = "pdf_scanned" # Scanned/image-based PDF
PDF_MIXED = "pdf_mixed" # Mixed content PDF
IMAGE = "image" # Image files
OFFICE_WORD = "office_word" # Word documents
OFFICE_EXCEL = "office_excel" # Excel spreadsheets
OFFICE_POWERPOINT = "office_ppt" # PowerPoint presentations
TEXT = "text" # Plain text files
UNKNOWN = "unknown" # Unknown format
```
---
## Response Models
### TaskResponse
```typescript
interface TaskResponse {
task_id: string;
filename: string;
status: "pending" | "processing" | "completed" | "failed";
language: string;
processing_track?: "ocr" | "direct" | null;
created_at: string; // ISO 8601
completed_at?: string | null;
}
```
### TaskDetailResponse
Extends `TaskResponse` with:
```typescript
interface TaskDetailResponse extends TaskResponse {
document_type?: string;
processing_time?: number; // seconds
page_count?: number;
element_count?: number;
character_count?: number;
confidence?: number; // 0.0-1.0
result_files?: {
json?: string;
markdown?: string;
pdf?: string;
};
metadata?: {
file_size?: number;
mime_type?: string;
text_coverage?: number; // 0.0-1.0
processing_track_reason?: string;
[key: string]: any;
};
}
```
### DocumentAnalysisResponse
```typescript
interface DocumentAnalysisResponse {
task_id: string;
filename: string;
analysis: {
recommended_track: "ocr" | "direct";
confidence: number; // 0.0-1.0
reason: string;
document_type: string;
metadata: {
total_pages?: number;
sampled_pages?: number;
text_coverage?: number;
mime_type?: string;
file_size?: number;
page_details?: Array<{
page: number;
text_length: number;
has_text: boolean;
image_count: number;
image_coverage: number;
}>;
};
};
}
```
### ProcessingMetadata
```typescript
interface ProcessingMetadata {
task_id: string;
processing_track: "ocr" | "direct";
document_type: string;
confidence: number;
reason: string;
statistics: {
page_count: number;
element_count: number;
total_tables: number;
total_images: number;
element_type_counts: {
[type: string]: number;
};
text_stats: {
total_characters: number;
total_words: number;
average_confidence: number | null;
};
};
processing_info: {
processing_time: number;
track_description: string;
schema_version: string;
};
file_metadata: {
filename: string;
file_size: number;
mime_type: string;
created_at: string;
};
}
```
---
## Error Handling
### HTTP Status Codes
- `200 OK`: Successful request
- `201 Created`: Resource created successfully
- `204 No Content`: Successful deletion
- `400 Bad Request`: Invalid request parameters
- `401 Unauthorized`: Missing or invalid authentication
- `403 Forbidden`: Insufficient permissions
- `404 Not Found`: Resource not found
- `422 Unprocessable Entity`: Validation error
- `500 Internal Server Error`: Server error
### Error Response Format
```json
{
"detail": "Error message describing the issue",
"error_code": "ERROR_CODE",
"timestamp": "2025-11-20T10:00:00Z"
}
```
### Common Errors
**Invalid File Format**:
```json
{
"detail": "Unsupported file format. Supported: PDF, PNG, JPG, DOCX, PPTX, XLSX",
"error_code": "INVALID_FILE_FORMAT"
}
```
**Task Not Found**:
```json
{
"detail": "Task not found or access denied",
"error_code": "TASK_NOT_FOUND"
}
```
**Processing Failed**:
```json
{
"detail": "OCR processing failed: GPU memory insufficient",
"error_code": "PROCESSING_FAILED"
}
```
**File Too Large**:
```json
{
"detail": "File size exceeds maximum limit of 50MB",
"error_code": "FILE_TOO_LARGE"
}
```
---
## Usage Examples
### Example 1: Auto-Route Processing
Upload a document and let the system choose the optimal track:
# Tool_OCR V2 API (現況)
Base URL`http://localhost:${BACKEND_PORT:-8000}/api/v2`
認證:所有業務端點需 Bearer TokenJWT
## 認證
- `POST /auth/login`{ username, password } → `access_token`, `expires_in`, `user`.
- `POST /auth/logout`:可傳 `session_id`,未傳則登出全部。
- `GET /auth/me`:目前使用者資訊。
- `GET /auth/sessions`:列出登入 Session。
- `POST /auth/refresh`:刷新 access token。
## 任務流程摘要
1) 上傳檔案 → `POST /upload` (multipart file) 取得 `task_id`
2) 啟動處理 → `POST /tasks/{task_id}/start`ProcessingOptions 可控制 dual track、force_track、layout/預處理/table 偵測)。
3) 查詢狀態與 metadata → `GET /tasks/{task_id}``/metadata`
4) 下載結果 → `/download/json | /markdown | /pdf | /unified`
5) 進階:`/analyze` 先看推薦軌道;`/preview/preprocessing` 取得預處理前後預覽。
## 核心端點
- `POST /upload`
- 表單欄位:`file` (必填);驗證副檔名於允許清單。
- 回傳:`task_id`, `filename`, `file_size`, `file_type`, `status` (pending)。
- `POST /tasks/`
- 僅建立 Task meta不含檔案通常不需使用。
- `POST /tasks/{task_id}/start`
- Body `ProcessingOptions``use_dual_track`(default true), `force_track`(ocr|direct), `language`(default ch), `layout_model`(chinese|default|cdla), `preprocessing_mode`(auto|manual|disabled) + `preprocessing_config`, `table_detection`.
- `POST /tasks/{task_id}/cancel``POST /tasks/{task_id}/retry`
- `GET /tasks`
- 查詢參數:`status`(pending|processing|completed|failed)、`filename``date_from`/`date_to``page``page_size``order_by``order_desc`
- `GET /tasks/{task_id}`:詳細資料與路徑、處理軌道、統計。
- `GET /tasks/stats`:當前使用者任務統計。
- `POST /tasks/{task_id}/analyze`:預先分析文件並給出推薦軌道/信心/文件類型/抽樣統計。
- `GET /tasks/{task_id}/metadata`:處理結果的統計與說明。
- 下載:
- `GET /tasks/{task_id}/download/json`
- `GET /tasks/{task_id}/download/markdown`
- `GET /tasks/{task_id}/download/pdf`(若無 PDF 則即時生成)
- `GET /tasks/{task_id}/download/unified`UnifiedDocument JSON
- 預處理預覽:
- `POST /tasks/{task_id}/preview/preprocessing`bodypage/mode/config
- `GET /tasks/{task_id}/preview/image?type=original|preprocessed&page=1`
## 翻譯(需已完成 OCR
Prefix`/translate`
- `POST /{task_id}`開始翻譯body `{ target_lang, source_lang }`,回傳 202。若已存在會直接回 Completed。
- `GET /{task_id}/status`:翻譯進度。
- `GET /{task_id}/result?lang=xx`:翻譯 JSON。
- `GET /{task_id}/translations`:列出已產生的翻譯。
- `DELETE /{task_id}/translations/{lang}`:刪除翻譯。
- `POST /{task_id}/pdf?lang=xx`:下載翻譯後版面保持 PDF。
## 管理端(需要管理員)
Prefix`/admin`
- `GET /stats`:系統層統計。
- `GET /users``GET /users/top`
- `GET /audit-logs``GET /audit-logs/user/{user_id}/summary`
## 健康檢查
- `/health`服務狀態、GPU/Memory 管理資訊。
- `/`:簡易 API 入口說明。
## 回應結構摘要
- Task 回應常見欄位:`task_id`, `status`, `processing_track`, `document_type`, `processing_time_ms`, `page_count`, `element_count`, `file_size`, `mime_type`, `result_json_path` 等。
- 下載端點皆以檔案回應Content-Disposition 附檔名)。
- 錯誤格式:`{ "detail": "...", "error_code": "...", "timestamp": "..." }`(部分錯誤僅有 `detail`)。
## 使用範例
上傳並啟動:
```bash
# 1. Upload document
curl -X POST "http://localhost:8000/api/v2/tasks/" \
# 上傳
curl -X POST "http://localhost:8000/api/v2/upload" \
-H "Authorization: Bearer $TOKEN" \
-F "file=@document.pdf" \
-F "language=ch"
-F "file=@demo_docs/edit.pdf"
# Response: {"task_id": "550e8400..."}
# 2. Check status
curl -X GET "http://localhost:8000/api/v2/tasks/550e8400..." \
-H "Authorization: Bearer $TOKEN"
# 3. Download results (when completed)
curl -X GET "http://localhost:8000/api/v2/tasks/550e8400.../download/json" \
# 啟動處理force_track=ocr 舉例)
curl -X POST "http://localhost:8000/api/v2/tasks/$TASK_ID/start" \
-H "Authorization: Bearer $TOKEN" \
-o result.json
-H "Content-Type: application/json" \
-d '{"force_track":"ocr","language":"ch"}'
# 查詢與下載
curl -X GET "http://localhost:8000/api/v2/tasks/$TASK_ID/metadata" -H "Authorization: Bearer $TOKEN"
curl -L "http://localhost:8000/api/v2/tasks/$TASK_ID/download/json" -H "Authorization: Bearer $TOKEN" -o result.json
```
### Example 2: Analyze Before Processing
Analyze document type before processing:
翻譯並下載翻譯 PDF
```bash
# 1. Upload document
curl -X POST "http://localhost:8000/api/v2/tasks/" \
curl -X POST "http://localhost:8000/api/v2/translate/$TASK_ID" \
-H "Authorization: Bearer $TOKEN" \
-F "file=@document.pdf"
-H "Content-Type: application/json" \
-d '{"target_lang":"en","source_lang":"auto"}'
# Response: {"task_id": "550e8400..."}
# 2. Analyze document (NEW)
curl -X POST "http://localhost:8000/api/v2/tasks/550e8400.../analyze" \
-H "Authorization: Bearer $TOKEN"
# Response shows recommended track and confidence
# 3. Start processing (automatic based on analysis)
# Processing happens in background after upload
curl -X GET "http://localhost:8000/api/v2/translate/$TASK_ID/status" -H "Authorization: Bearer $TOKEN"
curl -L "http://localhost:8000/api/v2/translate/$TASK_ID/pdf?lang=en" \
-H "Authorization: Bearer $TOKEN" -o translated.pdf
```
### Example 3: Force Specific Track
Force OCR processing for an editable PDF:
```bash
curl -X POST "http://localhost:8000/api/v2/tasks/" \
-H "Authorization: Bearer $TOKEN" \
-F "file=@document.pdf" \
-F "force_track=ocr"
```
### Example 4: Get Processing Metadata
Get detailed processing information:
```bash
curl -X GET "http://localhost:8000/api/v2/tasks/550e8400.../metadata" \
-H "Authorization: Bearer $TOKEN"
```
---
## Version History
### V2.0.0 (2025-11-20) - Dual-Track Processing
**New Features**:
- ✨ Dual-track processing (OCR + Direct Extraction)
- ✨ Automatic document type detection
- ✨ Office document support (Word, PowerPoint, Excel)
- ✨ Processing track metadata
- ✨ Enhanced layout analysis (23 element types)
- ✨ GPU memory management
**New Endpoints**:
- `POST /tasks/{task_id}/analyze` - Analyze document type
- `GET /tasks/{task_id}/metadata` - Get processing metadata
**Enhanced Endpoints**:
- `POST /tasks/` - Added `force_track` parameter
- `GET /tasks/{task_id}` - Added `processing_track`, `document_type`, element counts
- All download endpoints now include processing track information
**Performance Improvements**:
- 10x faster processing for editable PDFs (1-2s vs 10-20s per page)
- Optimized GPU memory usage for RTX 4060 8GB
- Office documents: 2-5s vs >300s (60x improvement)
---
## Support
For issues, questions, or feature requests:
- GitHub Issues: https://github.com/your-repo/Tool_OCR/issues
- Documentation: https://your-docs-site.com
- API Status: http://localhost:8000/health
---
*Generated by Tool_OCR V2.0.0 - Dual-Track Document Processing*