feat: add translated PDF format selection (layout/reflow)

- Add generate_translated_layout_pdf() method for layout-preserving translated PDFs
- Add generate_translated_pdf() method for reflow translated PDFs
- Update translate router to accept format parameter (layout/reflow)
- Update frontend with dropdown to select translated PDF format
- Fix reflow PDF table cell extraction from content dict
- Add embedded images handling in reflow PDF tables
- Archive improve-translated-text-fitting openspec proposal

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
egg
2025-12-03 10:10:28 +08:00
parent 0dcea4a7e7
commit 08adf3d01d
15 changed files with 1384 additions and 1222 deletions

348
README.md
View File

@@ -1,270 +1,82 @@
# Tool_OCR
**OCR Batch Processing System with Structure Extraction**
A web-based solution to extract text, images, and document structure from multiple files efficiently using PaddleOCR-VL.
## Features
- 🔍 **Multi-Language OCR**: Support for 109 languages (Chinese, English, Japanese, Korean, etc.)
- 📄 **Document Structure Analysis**: Intelligent layout analysis with PP-StructureV3
- 🖼️ **Image Extraction**: Preserve document images alongside text content
- 📑 **Batch Processing**: Process multiple files concurrently with progress tracking
- 📤 **Multiple Export Formats**: TXT, JSON, Excel, Markdown with images, searchable PDF
- 📋 **Office Documents**: DOC, DOCX, PPT, PPTX support via LibreOffice conversion
- 🚀 **GPU Acceleration**: Automatic CUDA GPU detection with graceful CPU fallback
- 🔧 **Flexible Configuration**: Rule-based output formatting
- 🌐 **Translation Ready**: Reserved architecture for future translation features
## Tech Stack
### Backend
- **Framework**: FastAPI 0.115.0
- **OCR Engine**: PaddleOCR 3.0+ with PaddleOCR-VL and PP-StructureV3
- **Deep Learning**: PaddlePaddle 3.2.1+ (GPU/CPU support)
- **Database**: MySQL via SQLAlchemy
- **PDF Generation**: Pandoc + WeasyPrint
- **Image Processing**: OpenCV, Pillow, pdf2image
- **Office Conversion**: LibreOffice (headless mode)
### Frontend
- **Framework**: React 19 with TypeScript
- **Build Tool**: Vite 7
- **Styling**: Tailwind CSS v4 + shadcn/ui
- **State Management**: React Query + Zustand
- **HTTP Client**: Axios
## Prerequisites
- **OS**: WSL2 Ubuntu 24.04
- **Python**: 3.12+
- **Node.js**: 24.x LTS
- **MySQL**: External database server (provided)
- **GPU** (Optional): NVIDIA GPU with CUDA 11.8+ for hardware acceleration
- PaddlePaddle 3.2.1+ requires CUDA 11.8, 12.3, or 12.6+
- WSL2 users: Ensure NVIDIA CUDA drivers are installed
## Quick Start
### 1. Automated Setup (Recommended)
```bash
# Run automated setup script
./setup_dev_env.sh
```
This script automatically:
- Detects NVIDIA GPU and CUDA version (if available)
- Installs Python development tools (pip, venv, build-essential)
- Installs system dependencies (pandoc, LibreOffice, fonts, etc.)
- Installs Node.js (via nvm)
- Installs PaddlePaddle 3.2.1+ GPU version (if GPU detected) or CPU version
- Configures WSL CUDA library paths (for WSL2 GPU users)
- Installs other Python packages (PaddleOCR, PaddleX, etc.)
- Installs frontend dependencies
- Verifies GPU functionality and chart recognition API availability
### 2. Initialize Database
```bash
source venv/bin/activate
cd backend
alembic upgrade head
python create_test_user.py
cd ..
```
Default test user:
- Username: `admin`
- Password: `admin123`
### 3. Start Development Servers
**Backend (Terminal 1):**
```bash
./start_backend.sh
```
**Frontend (Terminal 2):**
```bash
./start_frontend.sh
```
### 4. Access Application
- **Frontend**: http://localhost:5173
- **API Docs**: http://localhost:8000/docs
- **Health Check**: http://localhost:8000/health
## Project Structure
```
Tool_OCR/
├── backend/ # FastAPI backend
│ ├── app/
│ │ ├── api/v1/ # API endpoints
│ │ ├── core/ # Configuration, database
│ │ ├── models/ # Database models
│ │ ├── services/ # Business logic
│ │ └── main.py # Application entry point
│ ├── alembic/ # Database migrations
│ └── tests/ # Test suite
├── frontend/ # React frontend
│ ├── src/
│ │ ├── components/ # UI components
│ │ ├── pages/ # Page components
│ │ ├── services/ # API services
│ │ └── stores/ # State management
│ └── public/ # Static assets
├── .env.local # Local development config
├── setup_dev_env.sh # Environment setup script
├── start_backend.sh # Backend startup script
└── start_frontend.sh # Frontend startup script
```
## Configuration
Main config file: `.env.local`
```bash
# Database
MYSQL_HOST=mysql.theaken.com
MYSQL_PORT=33306
# Application ports
BACKEND_PORT=8000
FRONTEND_PORT=5173
# Token expiration (minutes)
ACCESS_TOKEN_EXPIRE_MINUTES=1440 # 24 hours
# Supported file formats
ALLOWED_EXTENSIONS=png,jpg,jpeg,pdf,bmp,tiff,doc,docx,ppt,pptx
# OCR settings
OCR_LANGUAGES=ch,en,japan,korean
MAX_OCR_WORKERS=4
# GPU acceleration (optional)
FORCE_CPU_MODE=false # Set to true to disable GPU even if available
GPU_MEMORY_FRACTION=0.8 # Fraction of GPU memory to use (0.0-1.0)
GPU_DEVICE_ID=0 # GPU device ID to use (0 for primary GPU)
```
### GPU Acceleration
The system automatically detects and utilizes NVIDIA GPU hardware when available:
- **Auto-detection**: Setup script detects GPU and installs appropriate PaddlePaddle version
- **Graceful fallback**: If GPU is unavailable or fails, system automatically uses CPU mode
- **Performance**: GPU acceleration provides 3-10x speedup for OCR processing
- **Configuration**: Control GPU usage via `.env.local` environment variables
- **WSL2 CUDA Setup**: For WSL2 users, CUDA library paths are automatically configured in `~/.bashrc`
**Chart Recognition**: Requires PaddlePaddle 3.2.0+ for full PP-StructureV3 chart recognition capabilities (chart type detection, data extraction, axis/legend parsing). The setup script installs PaddlePaddle 3.2.1+ which includes all required APIs.
Check GPU status and chart recognition availability at: http://localhost:8000/health
## API Endpoints
### Authentication
- `POST /api/v1/auth/login` - User login
### File Management
- `POST /api/v1/upload` - Upload files
- `POST /api/v1/ocr/process` - Start OCR processing
- `GET /api/v1/batch/{id}/status` - Get batch status
### Results & Export
- `GET /api/v1/ocr/result/{id}` - Get OCR result
- `GET /api/v1/export/pdf/{id}` - Export as PDF
Full API documentation: http://localhost:8000/docs
## Supported File Formats
- **Images**: PNG, JPG, JPEG, BMP, TIFF
- **Documents**: PDF
- **Office**: DOC, DOCX, PPT, PPTX
Office files are automatically converted to PDF before OCR processing.
## Development
### Backend
```bash
source venv/bin/activate
cd backend
# Run tests
pytest
# Database migration
alembic revision --autogenerate -m "description"
alembic upgrade head
# Code formatting
black app/
```
### Frontend
```bash
cd frontend
# Development server
npm run dev
# Build for production
npm run build
# Lint code
npm run lint
```
## OpenSpec Workflow
This project follows OpenSpec for specification-driven development:
```bash
# View current changes
openspec list
# Validate specifications
openspec validate add-ocr-batch-processing
# View implementation tasks
cat openspec/changes/add-ocr-batch-processing/tasks.md
```
## Roadmap
- [x] **Phase 0**: Environment setup
- [x] **Phase 1**: Core OCR backend (~98% complete)
- [x] **Phase 2**: Frontend development (~92% complete)
- [ ] **Phase 3**: Testing & optimization
- [ ] **Phase 4**: Deployment automation
- [ ] **Phase 5**: Translation feature (future)
## Documentation
- Development specs: [openspec/project.md](openspec/project.md)
- Implementation status: [openspec/changes/add-ocr-batch-processing/STATUS.md](openspec/changes/add-ocr-batch-processing/STATUS.md)
- Agent instructions: [openspec/AGENTS.md](openspec/AGENTS.md)
## License
Internal project use
## Notes
- First OCR run will download PaddleOCR models (~900MB)
- Token expiration is set to 24 hours by default
- Office conversion requires LibreOffice (installed via setup script)
- Development environment: WSL2 Ubuntu 24.04 with Python venv
- **GPU acceleration**: Automatically detected and enabled if NVIDIA GPU with CUDA 11.8+ is available
- **PaddlePaddle version**: System uses PaddlePaddle 3.2.1+ which includes full chart recognition support
- **WSL GPU support**: WSL2 CUDA library paths (`/usr/lib/wsl/lib`) are automatically configured in `~/.bashrc`
- **Chart recognition**: Fully enabled with PP-StructureV3 for chart type detection, data extraction, and structure analysis
- GPU status and chart recognition availability can be checked via `/health` API endpoint
多語系批次 OCR 與版面還原工具,提供直接抽取與深度 OCR 雙軌流程、PP-StructureV3 結構分析、JSON/Markdown/版面保持 PDF 匯出,前端以 React 提供任務追蹤與下載。
## 功能亮點
- 雙軌處理DocumentTypeDetector 選擇 Direct (PyMuPDF 抽取) 或 OCR (PaddleOCR + PP-StructureV3),必要時混合補圖。
- 統一輸出OCR/Direct 皆轉成 UnifiedDocument後續匯出 JSON/Markdown/版面保持 PDF並回寫 metadata。
- 資源控管OCRServicePool、MemoryGuard 與 prediction semaphore 控制 GPU/CPU 載荷,支援自動卸載與 CPU fallback。
- 任務與權限JWT 驗證、外部登入 API、任務歷史/統計、管理員審計路由。
- 前端體驗React + Vite + shadcn/ui任務輪詢、結果預覽、下載、設定頁與管理面板。
- 國際化保留翻譯流水線translation_service可接入 Dify/離線模型。
## 架構概覽
- **Backend (FastAPI)**
- `app/main.py`lifespan 初始化 service pool、memory manager、CORS、/health上傳端點 `/api/v2/upload`
- `routers/``auth.py` 登入、`tasks.py` 任務啟動/下載/metadata、`admin.py` 審計、`translate.py` 翻譯輸出。
- `services/``ocr_service.py` 雙軌處理、`document_type_detector.py` 軌道選擇、`direct_extraction_engine.py` 直抽、`pp_structure_enhanced.py` 版面分析、`ocr_to_unified_converter.py``unified_document_exporter.py` 匯出、`pdf_generator_service.py` 版面保持 PDF、`service_pool.py`/`memory_manager.py` 資源管理。
- `models/``schemas/`SQLAlchemy 模型與 Pydantic 結構,`core/config.py` 整合環境設定。
- **Frontend (React 18 + Vite)**
- `src/pages`Login、Upload、Processing、Results、Export、TaskHistory/TaskDetail、Settings、AdminDashboard、AuditLogs。
- `src/services` API client + React Query`src/store` 任務/使用者狀態,`src/components` 共用 UI。
- PDF 預覽使用 react-pdfi18n 由 `src/i18n` 管理。
- **處理流程摘要**
1. `/api/v2/upload` 儲存檔案至 `backend/uploads` 並建立 Task。
2. `/api/v2/tasks/{id}/start` 觸發雙軌處理(可附 `pp_structure_params`)。
3. Direct/OCR 產生 UnifiedDocument匯出 `_result.json``_output.md`、版面保持 PDF 至 `backend/storage/results/<task_id>/`,並在 DB 記錄 metadata。
4. `/api/v2/tasks/{id}/download/{json|markdown|pdf|unified}``/metadata` 提供下載與統計。
## 倉庫結構
- `backend/app/`FastAPI 程式碼core、routers、services、schemas、models、main.py
- `backend/tests/`:測試集合
- `api/` API mock/integration、`services/` 核心邏輯、`e2e/` 需啟動後端與測試帳號、`performance/` 量測、`archived/` 舊案例。
- 測試資源使用 `demo_docs/` 中的範例檔gitignore不會上傳
- `backend/uploads`, `backend/storage`, `backend/logs`, `backend/models/`:執行時輸入/輸出/模型/日誌目錄,啟動時自動建立並鎖定在 backend 目錄下。
- `frontend/`React 應用程式碼與設定vite.config.ts、eslint.config.js 等)。
- `docs/`API/架構/風險說明。
- `openspec/`:規格檔與變更紀錄。
## 環境準備
- 需求:Python 3.10+、Node 18+/20+、MySQL或相容端點、可選 NVIDIA GPUCUDA 11.8+/12.x
- 一鍵腳本:`./setup_dev_env.sh`(可加 `--cpu-only``--skip-db`)。
- 手動:
1. `python3 -m venv venv && source venv/bin/activate`
2. `pip install -r requirements.txt`
3. `cp .env.example .env.local` 並填入 DB/認證/路徑設定(預設使用 8000/5173
4. `cd frontend && npm install`
## 開發啟動
- Backend預設 `.env``BACKEND_PORT=8000`config 預設 12010依環境變數覆蓋
```bash
source venv/bin/activate
cd backend
uvicorn app.main:app --reload --host 0.0.0.0 --port ${BACKEND_PORT:-8000}
# API docs: http://localhost:${BACKEND_PORT:-8000}/docs
```
`Settings` 會將 `uploads`/`storage`/`logs`/`models` 等路徑正規化到 `backend/`,避免在不同工作目錄產生多餘資料夾。
- Frontend
```bash
cd frontend
npm run dev -- --host --port ${FRONTEND_PORT:-5173}
# http://localhost:${FRONTEND_PORT:-5173}
```
- 也可用 `./start.sh backend|frontend|--stop|--status` 管理背景進程PID 置於 `.pid/`)。
## 測試
- 單元/整合:`pytest backend/tests -m "not e2e"`(如需)。
- API mock 測試:`pytest backend/tests/api`(僅依賴虛擬依賴/SQLite
- E2E需先啟動後端並準備測試帳號預設呼叫 `http://localhost:8000/api/v2`,測試檔使用 `demo_docs/` 範例檔。
- 性能/封存案例:`backend/tests/performance`、`backend/tests/archived` 可選擇性執行。
## 產生物與清理
- 執行後的輸入/輸出皆位於 `backend/uploads`、`backend/storage/results|json|markdown|exports`、`backend/logs`,模型快取在 `backend/models/`。
- 已移除多餘的 `node_modules/`、`venv/`、舊的 `pp_demo/` 與上傳/輸出/日誌樣本。再次清理可執行:
```bash
rm -rf backend/uploads/* backend/storage/results/* backend/logs/*.log .pytest_cache backend/.pytest_cache
```
目錄會在啟動時自動重建。
## 參考文件
- `docs/architecture-overview.md`:雙軌流程與組件說明
- `docs/API.md`:主要 API 介面
- `openspec/`:系統規格與歷史變更