proposal: add hybrid control mode with auto-detection and preview

Updates add-layout-preprocessing proposal:
- Auto mode: analyze image quality, auto-select parameters
- Manual mode: user override with specific settings
- Preview API: compare original vs preprocessed before processing
- Frontend UI: mode selection, manual controls, preview button

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
egg
2025-11-27 14:31:09 +08:00
parent c12ea0b9f6
commit 06a5973f2e
4 changed files with 244 additions and 20 deletions

View File

@@ -27,13 +27,15 @@ Original Image ← ← ← ← Image extraction crops from original (NOT preproc
### Goals
- Improve table detection for documents with faint lines
- Preserve original image quality for element extraction
- Make preprocessing configurable (enable/disable, intensity)
- **Hybrid control**: Auto mode by default, manual override available
- **Preview capability**: Users can verify preprocessing before processing
- Minimal performance impact
### Non-Goals
- Preprocessing for text recognition (Raw OCR handles this separately)
- Modifying how PP-Structure internally processes images
- General image quality improvement (out of scope)
- Real-time preview during processing (preview is pre-processing only)
## Decisions
@@ -65,6 +67,72 @@ Original Image ← ← ← ← Image extraction crops from original (NOT preproc
- Helps make faint table borders more detectable
- Configurable strength
### Decision 5: Hybrid Control Mode (Auto + Manual)
**Rationale**:
- Auto mode provides seamless experience for most users
- Manual mode gives power users fine control
- Preview allows verification before committing to processing
**Auto-detection algorithm**:
```python
def analyze_image_quality(image: np.ndarray) -> dict:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Contrast: standard deviation of pixel values
contrast = np.std(gray)
# Edge strength: mean of Sobel gradient magnitude
sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
edge_strength = np.mean(np.sqrt(sobel_x**2 + sobel_y**2))
return {
"contrast": contrast,
"edge_strength": edge_strength,
"recommended": {
"contrast": "clahe" if contrast < 40 else "none",
"sharpen": edge_strength < 15,
"binarize": contrast < 20
}
}
```
### Decision 6: Preview API Design
**Rationale**:
- Users should see preprocessing effect before full processing
- Reduces trial-and-error cycles
- Builds user confidence in the system
**API Design**:
```
POST /api/v2/tasks/{task_id}/preview/preprocessing
Request:
{
"page": 1,
"mode": "auto", // or "manual"
"config": { // only for manual mode
"contrast": "clahe",
"sharpen": true,
"binarize": false
}
}
Response:
{
"original_url": "/api/v2/tasks/{id}/pages/1/image",
"preprocessed_url": "/api/v2/tasks/{id}/pages/1/image?preprocessed=true",
"quality_metrics": {
"contrast": 35.2,
"edge_strength": 12.8
},
"auto_config": {
"contrast": "clahe",
"sharpen": true,
"binarize": false
}
}
```
## Implementation Details
### Preprocessing Pipeline

View File

@@ -18,9 +18,19 @@ The root cause is that layout detection happens **before** table structure recog
- Image element extraction continues to use original (preserves quality)
- Raw OCR continues to use original image
- **Configurable preprocessing options**
- Enable/disable preprocessing per track
- Adjustable preprocessing intensity
- **Hybrid control mode** (Auto + Manual)
- **Auto mode (default)**: Analyze image quality and auto-select parameters
- Calculate contrast level (standard deviation)
- Detect edge clarity for faint lines
- Apply appropriate preprocessing based on analysis
- **Manual mode**: User can override with specific settings
- Contrast: none / histogram / clahe
- Sharpen: on/off
- Binarize: on/off
- **Frontend preview API**
- Preview endpoint to show original vs preprocessed comparison
- Users can verify settings before processing
## Impact
@@ -31,6 +41,8 @@ The root cause is that layout detection happens **before** table structure recog
- `backend/app/services/ocr_service.py` - Add preprocessing before PP-Structure
- `backend/app/core/config.py` - New preprocessing configuration options
- `backend/app/services/preprocessing_service.py` - New service (to be created)
- `backend/app/api/v2/endpoints/preview.py` - New preview API endpoint
- `frontend/src/components/PreprocessingSettings.tsx` - New UI component
### Track Impact Analysis

View File

@@ -17,12 +17,6 @@ The system SHALL provide optional image preprocessing to enhance layout detectio
- **THEN** the system SHALL crop from the ORIGINAL image, not the preprocessed version
- **AND** the extracted image SHALL maintain original quality and colors
#### Scenario: Preprocessing can be disabled
- **GIVEN** `layout_preprocessing_enabled` is set to false in configuration
- **WHEN** OCR track processing runs
- **THEN** the system SHALL skip preprocessing
- **AND** PP-Structure SHALL receive the original image directly
#### Scenario: CLAHE contrast enhancement
- **WHEN** `layout_preprocessing_contrast` is set to "clahe"
- **THEN** the system SHALL apply Contrast Limited Adaptive Histogram Equalization
@@ -38,6 +32,61 @@ The system SHALL provide optional image preprocessing to enhance layout detectio
- **THEN** the system SHALL apply adaptive thresholding
- **AND** this SHALL be used only for documents with very poor contrast
### Requirement: Preprocessing Hybrid Control Mode
The system SHALL support three preprocessing modes: automatic, manual, and disabled, with automatic as the default.
#### Scenario: Auto mode analyzes image quality
- **GIVEN** preprocessing mode is set to "auto"
- **WHEN** processing begins for a page
- **THEN** the system SHALL analyze image quality metrics (contrast, edge strength)
- **AND** automatically determine optimal preprocessing parameters
- **AND** apply recommended settings without user intervention
#### Scenario: Auto mode detects low contrast
- **GIVEN** preprocessing mode is "auto"
- **WHEN** image contrast (standard deviation) is below 40
- **THEN** the system SHALL automatically enable CLAHE contrast enhancement
#### Scenario: Auto mode detects faint edges
- **GIVEN** preprocessing mode is "auto"
- **WHEN** image edge strength (Sobel gradient mean) is below 15
- **THEN** the system SHALL automatically enable sharpening
#### Scenario: Manual mode uses user-specified settings
- **GIVEN** preprocessing mode is set to "manual"
- **WHEN** processing begins
- **THEN** the system SHALL use the user-provided preprocessing configuration
- **AND** ignore automatic quality analysis
#### Scenario: Disabled mode skips preprocessing
- **GIVEN** preprocessing mode is set to "disabled"
- **WHEN** processing begins
- **THEN** the system SHALL skip all preprocessing
- **AND** PP-Structure SHALL receive the original image directly
### Requirement: Preprocessing Preview API
The system SHALL provide a preview endpoint that allows users to compare original and preprocessed images before processing.
#### Scenario: Preview returns comparison images
- **GIVEN** a task with uploaded document
- **WHEN** user requests preprocessing preview for a specific page
- **THEN** the system SHALL return URLs or data for both original and preprocessed images
- **AND** user can visually compare the difference
#### Scenario: Preview shows auto-detected settings
- **GIVEN** preview is requested with mode "auto"
- **WHEN** the system analyzes the page
- **THEN** the response SHALL include the auto-detected preprocessing configuration
- **AND** include quality metrics (contrast, edge_strength)
#### Scenario: Preview accepts manual configuration
- **GIVEN** preview is requested with mode "manual"
- **WHEN** user provides specific preprocessing settings
- **THEN** the system SHALL apply those settings to generate preview
- **AND** return the preprocessed result for user verification
### Requirement: Preprocessing Track Isolation
The layout preprocessing feature SHALL only affect layout detection input without impacting other processing components.
@@ -53,3 +102,27 @@ The layout preprocessing feature SHALL only affect layout detection input withou
- **WHEN** layout detection completes
- **THEN** the preprocessed image SHALL NOT be persisted to storage
- **AND** only the original image and element crops SHALL be saved
### Requirement: Preprocessing Frontend UI
The frontend SHALL provide a user interface for configuring and previewing preprocessing settings.
#### Scenario: Mode selection is available
- **GIVEN** the user is configuring OCR track processing
- **WHEN** the preprocessing settings panel is displayed
- **THEN** the user SHALL be able to select mode: Auto (default), Manual, or Disabled
- **AND** Auto mode SHALL be pre-selected
#### Scenario: Manual mode shows configuration options
- **GIVEN** the user selects Manual mode
- **WHEN** the settings panel updates
- **THEN** the user SHALL see options for:
- Contrast enhancement (None / Histogram / CLAHE)
- Sharpen toggle
- Binarize toggle
#### Scenario: Preview button triggers comparison view
- **GIVEN** preprocessing settings are configured
- **WHEN** the user clicks Preview button
- **THEN** the system SHALL display side-by-side comparison of original and preprocessed images
- **AND** show detected quality metrics

View File

@@ -3,11 +3,15 @@
## 1. Configuration
- [ ] 1.1 Add preprocessing configuration to `backend/app/core/config.py`
- `layout_preprocessing_enabled: bool = True` - Enable/disable preprocessing
- `layout_preprocessing_mode: str = "auto"` - Options: auto, manual, disabled
- `layout_preprocessing_contrast: str = "clahe"` - Options: none, histogram, clahe
- `layout_preprocessing_sharpen: bool = True` - Enable sharpening for faint lines
- `layout_preprocessing_binarize: bool = False` - Optional binarization (aggressive)
- [ ] 1.2 Add preprocessing schema to `backend/app/schemas/task.py`
- `PreprocessingMode` enum: auto, manual, disabled
- `PreprocessingConfig` schema for API request/response
## 2. Preprocessing Service
- [ ] 2.1 Create `backend/app/services/preprocessing_service.py`
@@ -18,15 +22,26 @@
- Return preprocessed image as numpy array or PIL Image
- [ ] 2.2 Implement `enhance_for_layout_detection()` function
- Input: Original image path or PIL Image
- Input: Original image path or PIL Image + config
- Output: Preprocessed image (same format as input)
- Steps: contrast → sharpen → (optional) binarize
- [ ] 2.3 Implement `analyze_image_quality()` function (Auto mode)
- Calculate contrast level (standard deviation of grayscale)
- Detect edge clarity (Sobel/Canny edge strength)
- Return recommended `PreprocessingConfig` based on analysis
- Thresholds:
- Low contrast < 40: Apply CLAHE
- Faint edges < 0.1: Apply sharpen
- Very low contrast < 20: Consider binarize
## 3. Integration with OCR Service
- [ ] 3.1 Update `backend/app/services/ocr_service.py`
- Import preprocessing service
- Before `_run_ppstructure()`, preprocess image if enabled
- Check preprocessing mode (auto/manual/disabled)
- If auto: call `analyze_image_quality()` first
- Before `_run_ppstructure()`, preprocess image based on config
- Pass preprocessed image to PP-Structure for layout detection
- Keep original image reference for image extraction
@@ -34,21 +49,77 @@
- Verify `saved_path` and `img_path` in elements reference original
- Bbox coordinates from preprocessed detection applied to original crop
## 4. Testing
- [ ] 3.3 Update task start API to accept preprocessing options
- Add `preprocessing_mode` parameter to start request
- Add `preprocessing_config` for manual mode overrides
- [ ] 4.1 Unit tests for preprocessing_service
## 4. Preview API
- [ ] 4.1 Create `backend/app/api/v2/endpoints/preview.py`
- `POST /api/v2/tasks/{task_id}/preview/preprocessing`
- Input: page number, preprocessing config (optional)
- Output:
- Original image (base64 or URL)
- Preprocessed image (base64 or URL)
- Auto-detected config (if mode=auto)
- Image quality metrics (contrast, edge_strength)
- [ ] 4.2 Add preview router to API
- Register in `backend/app/api/v2/api.py`
- Add appropriate authentication/authorization
## 5. Frontend UI
- [ ] 5.1 Create `frontend/src/components/PreprocessingSettings.tsx`
- Radio buttons: Auto / Manual / Disabled
- Manual mode shows:
- Contrast dropdown: None / Histogram / CLAHE
- Sharpen checkbox
- Binarize checkbox
- Preview button to trigger comparison view
- [ ] 5.2 Create `frontend/src/components/PreprocessingPreview.tsx`
- Side-by-side image comparison (original vs preprocessed)
- Display detected quality metrics
- Show which auto settings would be applied
- Slider or toggle to switch between views
- [ ] 5.3 Integrate with task start flow
- Add PreprocessingSettings to OCR track options
- Pass selected config to task start API
- Store user preference in localStorage
- [ ] 5.4 Add i18n translations
- `frontend/src/i18n/locales/zh-TW.json` - Traditional Chinese
- `frontend/src/i18n/locales/en.json` - English (if exists)
## 6. Testing
- [ ] 6.1 Unit tests for preprocessing_service
- Test contrast enhancement methods
- Test sharpening filter
- Test binarization
- Test `analyze_image_quality()` with various images
- Test with various image formats (PNG, JPEG)
- [ ] 4.2 Integration tests
- Test OCR track with preprocessing enabled/disabled
- [ ] 6.2 Unit tests for preview API
- Test preview endpoint returns correct images
- Test auto-detection returns sensible config
- [ ] 6.3 Integration tests
- Test OCR track with preprocessing modes (auto/manual/disabled)
- Verify image element quality is preserved
- Test with known problematic documents (faint table borders)
- Verify auto mode improves detection for low-quality images
## 5. Documentation
## 7. Documentation
- [ ] 5.1 Update API documentation
- [ ] 7.1 Update API documentation
- Document new configuration options
- Explain preprocessing behavior
- Document preview endpoint
- Explain preprocessing behavior and modes
- [ ] 7.2 Add user guide section
- When to use auto vs manual
- How to interpret quality metrics
- Troubleshooting tips