feat: Meeting Assistant MVP - Complete implementation
Enterprise Meeting Knowledge Management System with: Backend (FastAPI): - Authentication proxy with JWT (pj-auth-api integration) - MySQL database with 4 tables (users, meetings, conclusions, actions) - Meeting CRUD with system code generation (C-YYYYMMDD-XX, A-YYYYMMDD-XX) - Dify LLM integration for AI summarization - Excel export with openpyxl - 20 unit tests (all passing) Client (Electron): - Login page with company auth - Meeting list with create/delete - Meeting detail with real-time transcription - Editable transcript textarea (single block, easy editing) - AI summarization with conclusions/action items - 5-second segment recording (efficient for long meetings) Sidecar (Python): - faster-whisper medium model with int8 quantization - ONNX Runtime VAD (lightweight, ~20MB vs PyTorch ~2GB) - Chinese punctuation processing - OpenCC for Traditional Chinese conversion - Anti-hallucination parameters - Auto-cleanup of temp audio files OpenSpec: - add-meeting-assistant-mvp (47 tasks, archived) - add-realtime-transcription (29 tasks, archived) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
@@ -0,0 +1,132 @@
|
||||
## Context
|
||||
Building a meeting knowledge management system for enterprise users. The system must support offline transcription on standard hardware (i5/8GB), integrate with existing company authentication, and provide AI-powered summarization via Dify LLM.
|
||||
|
||||
**Stakeholders**: Enterprise meeting participants, meeting recorders, admin users (ymirliu@panjit.com.tw)
|
||||
|
||||
**Constraints**:
|
||||
- Must run faster-whisper int8 on i5/8GB laptop
|
||||
- DB credentials and API keys must stay server-side (security)
|
||||
- All database tables prefixed with `meeting_`
|
||||
- Output must support Traditional Chinese (繁體中文)
|
||||
|
||||
## Goals / Non-Goals
|
||||
|
||||
**Goals**:
|
||||
- Deliver working MVP with all six capabilities
|
||||
- Secure architecture with secrets in middleware only
|
||||
- Offline-capable transcription
|
||||
- Structured output with trackable action items
|
||||
|
||||
**Non-Goals**:
|
||||
- Multi-language support beyond Traditional Chinese
|
||||
- Real-time collaborative editing
|
||||
- Mobile client
|
||||
- Custom LLM model training
|
||||
|
||||
## Architecture
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────────┐
|
||||
│ Electron Client │
|
||||
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────────┐ │
|
||||
│ │ Auth UI │ │ Meeting UI │ │ Transcription Engine │ │
|
||||
│ │ (Login) │ │ (CRUD/Edit) │ │ (faster-whisper+OpenCC)│ │
|
||||
│ └──────┬──────┘ └──────┬──────┘ └────────────┬────────────┘ │
|
||||
└─────────┼────────────────┼──────────────────────┼───────────────┘
|
||||
│ │ │
|
||||
│ HTTP │ HTTP │ Local only
|
||||
▼ ▼ ▼
|
||||
┌─────────────────────────────────────────────────────────────────┐
|
||||
│ FastAPI Middleware Server │
|
||||
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────┐ │
|
||||
│ │ Auth Proxy │ │Meeting CRUD │ │ Dify Proxy │ │ Export │ │
|
||||
│ │ POST /login │ │POST/GET/... │ │POST /ai/... │ │GET /:id│ │
|
||||
│ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ └───┬────┘ │
|
||||
└─────────┼────────────────┼────────────────┼─────────────┼───────┘
|
||||
│ │ │ │
|
||||
▼ ▼ ▼ │
|
||||
┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
|
||||
│ PJ-Auth API │ │ MySQL │ │ Dify LLM │ │
|
||||
│ (Vercel) │ │ (theaken.com)│ │(theaken.com) │ │
|
||||
└──────────────┘ └──────────────┘ └──────────────┘ │
|
||||
│
|
||||
┌────────────────────┘
|
||||
▼
|
||||
┌──────────────┐
|
||||
│ Excel Template│
|
||||
│ (openpyxl) │
|
||||
└──────────────┘
|
||||
```
|
||||
|
||||
## Decisions
|
||||
|
||||
### Decision 1: Three-tier architecture with middleware
|
||||
**Choice**: All external services accessed through FastAPI middleware
|
||||
**Rationale**: Security requirement - DB credentials and API keys cannot be in Electron client
|
||||
**Alternatives considered**:
|
||||
- Direct client-to-service: Rejected due to credential exposure risk
|
||||
- Serverless functions: More complex deployment for similar security
|
||||
|
||||
### Decision 2: Edge transcription in Electron
|
||||
**Choice**: Run faster-whisper locally via Python sidecar (PyInstaller)
|
||||
**Rationale**: Offline capability requirement; network latency unacceptable for real-time transcription
|
||||
**Alternatives considered**:
|
||||
- Cloud STT (Google/Azure): Requires network, latency issues
|
||||
- WebAssembly whisper: Not mature enough for production
|
||||
|
||||
### Decision 3: MySQL with prefixed tables
|
||||
**Choice**: Use shared MySQL instance with `meeting_` prefix
|
||||
**Rationale**: Leverage existing infrastructure; prefix ensures isolation
|
||||
**Alternatives considered**:
|
||||
- Dedicated database: Overhead not justified for MVP
|
||||
- SQLite: Doesn't support multi-user access
|
||||
|
||||
### Decision 4: Dify for LLM summarization
|
||||
**Choice**: Use company Dify instance for AI features
|
||||
**Rationale**: Already available infrastructure; structured JSON output support
|
||||
**Alternatives considered**:
|
||||
- Direct OpenAI API: Additional cost, no existing infrastructure
|
||||
- Local LLM: Hardware constraints (i5/8GB insufficient)
|
||||
|
||||
## Risks / Trade-offs
|
||||
|
||||
| Risk | Impact | Mitigation |
|
||||
|------|--------|------------|
|
||||
| faster-whisper performance on i5/8GB | High | Use int8 quantization; test on target hardware early |
|
||||
| Dify timeout on long transcripts | Medium | Implement chunking; add timeout handling with retry |
|
||||
| Token expiry during long meetings | Medium | Implement auto-refresh interceptor in client |
|
||||
| Network failure during save | Medium | Client-side queue with retry; local draft storage |
|
||||
|
||||
## Data Model
|
||||
|
||||
```sql
|
||||
-- Tables all prefixed with meeting_
|
||||
|
||||
meeting_users (user_id, email, display_name, role, created_at)
|
||||
meeting_records (meeting_id, uuid, subject, meeting_time, location,
|
||||
chairperson, recorder, attendees, transcript_blob,
|
||||
created_by, created_at)
|
||||
meeting_conclusions (conclusion_id, meeting_id, content, system_code)
|
||||
meeting_action_items (action_id, meeting_id, content, owner, due_date,
|
||||
status, system_code)
|
||||
```
|
||||
|
||||
**ID Formats**:
|
||||
- Conclusions: `C-YYYYMMDD-XX` (e.g., C-20251210-01)
|
||||
- Action Items: `A-YYYYMMDD-XX` (e.g., A-20251210-01)
|
||||
|
||||
## API Endpoints
|
||||
|
||||
| Method | Endpoint | Purpose |
|
||||
|--------|----------|---------|
|
||||
| POST | /api/login | Proxy auth to PJ-Auth API |
|
||||
| GET | /api/meetings | List meetings (filterable) |
|
||||
| POST | /api/meetings | Create meeting |
|
||||
| GET | /api/meetings/:id | Get meeting details |
|
||||
| PUT | /api/meetings/:id | Update meeting |
|
||||
| DELETE | /api/meetings/:id | Delete meeting |
|
||||
| POST | /api/ai/summarize | Send transcript to Dify |
|
||||
| GET | /api/meetings/:id/export | Generate Excel report |
|
||||
|
||||
## Open Questions
|
||||
- None currently - PRD and SDD provide sufficient detail for MVP implementation
|
||||
Reference in New Issue
Block a user