This commit is contained in:
beabigegg
2025-09-02 13:11:48 +08:00
parent a60d965317
commit b11a8272c4
76 changed files with 15321 additions and 200 deletions

View File

@@ -11,10 +11,11 @@ Modified: 2024-01-28
import hashlib
import time
from pathlib import Path
from typing import List, Dict, Any, Optional
from typing import List, Dict, Any, Optional, Tuple
from app.utils.logger import get_logger
from app.utils.exceptions import TranslationError, FileProcessingError
from app.services.dify_client import DifyClient
from app.services.document_processor import DocumentProcessor, Segment
from app.models.cache import TranslationCache
from app.models.job import TranslationJob
from app.utils.helpers import generate_filename, create_job_directory
@@ -42,88 +43,39 @@ class DocumentParser:
class DocxParser(DocumentParser):
"""DOCX 文件解析器"""
"""DOCX 文件解析器 - 使用增強的 DocumentProcessor"""
def __init__(self, file_path: str):
super().__init__(file_path)
self.processor = DocumentProcessor()
def extract_text_segments(self) -> List[str]:
"""提取 DOCX 文件的文字片段"""
"""提取 DOCX 文件的文字片段 - 使用增強邏輯"""
try:
import docx
from docx.table import _Cell
# 使用新的文檔處理器提取段落
segments = self.processor.extract_docx_segments(str(self.file_path))
doc = docx.Document(str(self.file_path))
# 轉換為文字列表
text_segments = []
for seg in segments:
if seg.text.strip() and len(seg.text.strip()) > 3:
text_segments.append(seg.text)
# 提取段落文字
for paragraph in doc.paragraphs:
text = paragraph.text.strip()
if text and len(text) > 3: # 過濾太短的文字
text_segments.append(text)
# 提取表格文字
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
text = cell.text.strip()
if text and len(text) > 3:
text_segments.append(text)
logger.info(f"Extracted {len(text_segments)} text segments from DOCX")
logger.info(f"Enhanced extraction: {len(text_segments)} text segments from DOCX")
return text_segments
except Exception as e:
logger.error(f"Failed to extract text from DOCX: {str(e)}")
raise FileProcessingError(f"DOCX 文件解析失敗: {str(e)}")
def extract_segments_with_context(self) -> List[Segment]:
"""提取帶上下文的段落資訊"""
return self.processor.extract_docx_segments(str(self.file_path))
def generate_translated_document(self, translations: Dict[str, List[str]],
target_language: str, output_dir: Path) -> str:
"""生成翻譯後的 DOCX 文件"""
"""生成翻譯後的 DOCX 文件 - 使用增強的翻譯插入邏輯"""
try:
import docx
from docx.shared import Pt
# 開啟原始文件
doc = docx.Document(str(self.file_path))
# 取得對應的翻譯
translated_texts = translations.get(target_language, [])
text_index = 0
# 處理段落
for paragraph in doc.paragraphs:
if paragraph.text.strip() and len(paragraph.text.strip()) > 3:
if text_index < len(translated_texts):
# 保留原文,添加翻譯
original_text = paragraph.text
translated_text = translated_texts[text_index]
# 清空段落
paragraph.clear()
# 添加原文
run = paragraph.add_run(original_text)
# 添加翻譯(新行,較小字體)
paragraph.add_run('\n')
trans_run = paragraph.add_run(translated_text)
trans_run.font.size = Pt(10)
trans_run.italic = True
text_index += 1
# 處理表格(簡化版本)
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
if cell.text.strip() and len(cell.text.strip()) > 3:
if text_index < len(translated_texts):
original_text = cell.text
translated_text = translated_texts[text_index]
# 清空儲存格
cell.text = f"{original_text}\n{translated_text}"
text_index += 1
# 生成輸出檔名
output_filename = generate_filename(
self.file_path.name,
@@ -133,10 +85,30 @@ class DocxParser(DocumentParser):
)
output_path = output_dir / output_filename
# 儲存文件
doc.save(str(output_path))
# 提取段落資訊
segments = self.extract_segments_with_context()
logger.info(f"Generated translated DOCX: {output_path}")
# 建立翻譯映射
translation_map = {}
translated_texts = translations.get(target_language, [])
# 對應文字段落與翻譯
text_index = 0
for seg in segments:
if text_index < len(translated_texts):
translation_map[(target_language, seg.text)] = translated_texts[text_index]
text_index += 1
# 使用增強的翻譯插入邏輯
ok_count, skip_count = self.processor.insert_docx_translations(
str(self.file_path),
segments,
translation_map,
[target_language],
str(output_path)
)
logger.info(f"Enhanced translation: Generated {output_path} with {ok_count} insertions, {skip_count} skips")
return str(output_path)
except Exception as e:
@@ -202,6 +174,7 @@ class TranslationService:
def __init__(self):
self.dify_client = DifyClient()
self.document_processor = DocumentProcessor()
# 文件解析器映射
self.parsers = {
@@ -222,31 +195,87 @@ class TranslationService:
return parser_class(file_path)
def split_text_into_sentences(self, text: str, language: str = 'auto') -> List[str]:
"""將文字分割成句子"""
# 這裡可以使用更智能的句子分割
# 暫時使用簡單的分割方式
sentences = []
# 基本的句子分割符號
separators = ['. ', '', '', '', '!', '?']
current_text = text
for sep in separators:
parts = current_text.split(sep)
if len(parts) > 1:
sentences.extend([part.strip() + sep.rstrip() for part in parts[:-1] if part.strip()])
current_text = parts[-1]
# 添加最後一部分
if current_text.strip():
sentences.append(current_text.strip())
# 過濾太短的句子
sentences = [s for s in sentences if len(s.strip()) > 5]
return sentences
"""將文字分割成句子 - 使用增強的分句邏輯"""
return self.document_processor.split_text_into_sentences(text, language)
def translate_segment_with_sentences(self, text: str, source_language: str,
target_language: str, user_id: int = None,
job_id: int = None) -> str:
"""
按段落翻譯,模仿成功版本的 translate_block_sentencewise 邏輯
對多行文字進行逐行、逐句翻譯,並重新組合成完整段落
"""
if not text or not text.strip():
return ""
# 檢查快取 - 先檢查整個段落的快取
cached_whole = TranslationCache.get_translation(text, source_language, target_language)
if cached_whole:
logger.debug(f"Whole paragraph cache hit: {text[:30]}...")
return cached_whole
# 按行處理
out_lines = []
all_successful = True
for raw_line in text.split('\n'):
if not raw_line.strip():
out_lines.append("")
continue
# 分句處理
sentences = self.document_processor.split_text_into_sentences(raw_line, source_language)
if not sentences:
sentences = [raw_line]
translated_parts = []
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
# 檢查句子級快取
cached_sentence = TranslationCache.get_translation(sentence, source_language, target_language)
if cached_sentence:
translated_parts.append(cached_sentence)
continue
# 呼叫 Dify API 翻譯句子
try:
result = self.dify_client.translate_text(
text=sentence,
source_language=source_language,
target_language=target_language,
user_id=user_id,
job_id=job_id
)
translated_sentence = result['translated_text']
# 儲存句子級快取
TranslationCache.save_translation(
sentence, source_language, target_language, translated_sentence
)
translated_parts.append(translated_sentence)
except Exception as e:
logger.error(f"Failed to translate sentence: {sentence[:30]}... Error: {str(e)}")
translated_parts.append(f"【翻譯失敗|{target_language}{sentence}")
all_successful = False
# 重新組合句子為一行
out_lines.append(" ".join(translated_parts))
# 重新組合所有行
final_result = "\n".join(out_lines)
# 如果全部成功,儲存整個段落的快取
if all_successful:
TranslationCache.save_translation(text, source_language, target_language, final_result)
return final_result
def translate_text_with_cache(self, text: str, source_language: str,
target_language: str, user_id: int = None,
job_id: int = None) -> str:
@@ -285,82 +314,173 @@ class TranslationService:
raise TranslationError(f"翻譯失敗: {str(e)}")
def translate_document(self, job_uuid: str) -> Dict[str, Any]:
"""翻譯文件(主要入口點)"""
"""翻譯文件(主要入口點)- 使用增強的文檔處理邏輯"""
try:
# 取得任務資訊
job = TranslationJob.query.filter_by(job_uuid=job_uuid).first()
if not job:
raise TranslationError(f"找不到任務: {job_uuid}")
logger.info(f"Starting document translation: {job_uuid}")
logger.info(f"Starting enhanced document translation: {job_uuid}")
# 更新任務狀態
job.update_status('PROCESSING', progress=0)
# 取得文件解析器
parser = self.get_document_parser(job.file_path)
# 使用增強的文檔處理器直接提取段落
file_ext = Path(job.file_path).suffix.lower()
# 提取文字片段
logger.info("Extracting text segments from document")
text_segments = parser.extract_text_segments()
if not text_segments:
raise TranslationError("文件中未找到可翻譯的文字")
# 分割成句子
logger.info("Splitting text into sentences")
all_sentences = []
for segment in text_segments:
sentences = self.split_text_into_sentences(segment, job.source_language)
all_sentences.extend(sentences)
# 去重複
unique_sentences = list(dict.fromkeys(all_sentences)) # 保持順序的去重
logger.info(f"Found {len(unique_sentences)} unique sentences to translate")
# 批次翻譯
translation_results = {}
total_sentences = len(unique_sentences)
for target_language in job.target_languages:
logger.info(f"Translating to {target_language}")
translated_sentences = []
if file_ext in ['.docx', '.doc']:
# 使用增強的 DOCX 處理邏輯
segments = self.document_processor.extract_docx_segments(job.file_path)
logger.info(f"Enhanced extraction: Found {len(segments)} segments to translate")
for i, sentence in enumerate(unique_sentences):
if not segments:
raise TranslationError("文件中未找到可翻譯的文字段落")
# 使用成功版本的翻譯邏輯 - 直接按段落翻譯,不做複雜分割
translatable_segments = []
for seg in segments:
if self.document_processor.should_translate_text(seg.text, job.source_language):
translatable_segments.append(seg)
logger.info(f"Found {len(translatable_segments)} segments to translate")
# 批次翻譯 - 直接按原始段落翻譯
translation_map = {} # 格式: (target_language, source_text) -> translated_text
total_segments = len(translatable_segments)
for target_language in job.target_languages:
logger.info(f"Translating to {target_language}")
for i, seg in enumerate(translatable_segments):
try:
# 使用整段文字進行翻譯
translated = self.translate_segment_with_sentences(
text=seg.text,
source_language=job.source_language,
target_language=target_language,
user_id=job.user_id,
job_id=job.id
)
# 直接以原始段落文字為鍵儲存翻譯結果
translation_map[(target_language, seg.text)] = translated
# 更新進度
progress = (i + 1) / total_segments * 100 / len(job.target_languages)
current_lang_index = job.target_languages.index(target_language)
total_progress = (current_lang_index * 100 + progress) / len(job.target_languages)
job.update_status('PROCESSING', progress=total_progress)
# 短暫延遲避免過快請求
time.sleep(0.1)
except Exception as e:
logger.error(f"Failed to translate segment: {seg.text[:50]}... Error: {str(e)}")
# 翻譯失敗時保留原文
translation_map[(target_language, seg.text)] = f"[翻譯失敗] {seg.text}"
# 生成翻譯文件
logger.info("Generating translated documents with enhanced insertion")
output_dir = Path(job.file_path).parent
output_files = {}
for target_language in job.target_languages:
try:
translated = self.translate_text_with_cache(
text=sentence,
source_language=job.source_language,
target_language=target_language,
user_id=job.user_id,
job_id=job.id
# 生成輸出檔名
output_filename = generate_filename(
Path(job.file_path).name,
'translated',
'translated',
target_language
)
translated_sentences.append(translated)
output_path = output_dir / output_filename
# 更新進度
progress = (i + 1) / total_sentences * 100 / len(job.target_languages)
current_lang_index = job.target_languages.index(target_language)
total_progress = (current_lang_index * 100 + progress) / len(job.target_languages)
job.update_status('PROCESSING', progress=total_progress)
# 使用增強的翻譯插入邏輯
ok_count, skip_count = self.document_processor.insert_docx_translations(
job.file_path,
segments,
translation_map,
[target_language],
str(output_path)
)
# 短暫延遲避免過快請求
time.sleep(0.1)
output_files[target_language] = str(output_path)
# 記錄翻譯檔案到資料庫
file_size = Path(output_path).stat().st_size
job.add_translated_file(
language_code=target_language,
filename=Path(output_path).name,
file_path=str(output_path),
file_size=file_size
)
logger.info(f"Generated {target_language}: {ok_count} insertions, {skip_count} skips")
except Exception as e:
logger.error(f"Failed to translate sentence: {sentence[:50]}... Error: {str(e)}")
# 翻譯失敗時保留原文
translated_sentences.append(f"[翻譯失敗] {sentence}")
logger.error(f"Failed to generate translated document for {target_language}: {str(e)}")
raise TranslationError(f"生成 {target_language} 翻譯文件失敗: {str(e)}")
else:
# 對於非 DOCX 文件,使用原有邏輯
logger.info(f"Using legacy processing for {file_ext} files")
parser = self.get_document_parser(job.file_path)
translation_results[target_language] = translated_sentences
# 生成翻譯文件
logger.info("Generating translated documents")
output_dir = Path(job.file_path).parent
output_files = {}
for target_language, translations in translation_results.items():
try:
# 重建翻譯映射
# 提取文字片段
text_segments = parser.extract_text_segments()
if not text_segments:
raise TranslationError("文件中未找到可翻譯的文字")
# 分割成句子
all_sentences = []
for segment in text_segments:
sentences = self.split_text_into_sentences(segment, job.source_language)
all_sentences.extend(sentences)
# 去重複
unique_sentences = list(dict.fromkeys(all_sentences))
logger.info(f"Found {len(unique_sentences)} unique sentences to translate")
# 批次翻譯
translation_results = {}
total_sentences = len(unique_sentences)
for target_language in job.target_languages:
logger.info(f"Translating to {target_language}")
translated_sentences = []
for i, sentence in enumerate(unique_sentences):
try:
translated = self.translate_text_with_cache(
text=sentence,
source_language=job.source_language,
target_language=target_language,
user_id=job.user_id,
job_id=job.id
)
translated_sentences.append(translated)
# 更新進度
progress = (i + 1) / total_sentences * 100 / len(job.target_languages)
current_lang_index = job.target_languages.index(target_language)
total_progress = (current_lang_index * 100 + progress) / len(job.target_languages)
job.update_status('PROCESSING', progress=total_progress)
time.sleep(0.1)
except Exception as e:
logger.error(f"Failed to translate sentence: {sentence[:50]}... Error: {str(e)}")
translated_sentences.append(f"[翻譯失敗] {sentence}")
translation_results[target_language] = translated_sentences
# 生成翻譯文件
output_dir = Path(job.file_path).parent
output_files = {}
for target_language, translations in translation_results.items():
translation_mapping = {target_language: translations}
output_file = parser.generate_translated_document(
@@ -371,7 +491,6 @@ class TranslationService:
output_files[target_language] = output_file
# 記錄翻譯檔案到資料庫
file_size = Path(output_file).stat().st_size
job.add_translated_file(
language_code=target_language,
@@ -379,29 +498,33 @@ class TranslationService:
file_path=output_file,
file_size=file_size
)
except Exception as e:
logger.error(f"Failed to generate translated document for {target_language}: {str(e)}")
raise TranslationError(f"生成 {target_language} 翻譯文件失敗: {str(e)}")
# 計算總成本(從 API 使用統計中取得)
# 計算總成本
total_cost = self._calculate_job_cost(job.id)
# 更新任務狀態為完成
job.update_status('COMPLETED', progress=100)
job.total_cost = total_cost
job.total_tokens = len(unique_sentences) # 簡化的 token 計算
# 計算實際使用的 token 數(從 API 使用統計中獲取)
from sqlalchemy import func
from app.models.stats import APIUsageStats
from app import db
actual_tokens = db.session.query(
func.sum(APIUsageStats.total_tokens)
).filter_by(job_id=job.id).scalar()
job.total_tokens = int(actual_tokens) if actual_tokens else 0
db.session.commit()
logger.info(f"Document translation completed: {job_uuid}")
logger.info(f"Enhanced document translation completed: {job_uuid}")
return {
'success': True,
'job_uuid': job_uuid,
'output_files': output_files,
'total_sentences': len(unique_sentences),
'total_sentences': len(texts_to_translate) if 'texts_to_translate' in locals() else len(unique_sentences) if 'unique_sentences' in locals() else 0,
'total_cost': float(total_cost),
'target_languages': job.target_languages
}
@@ -409,13 +532,14 @@ class TranslationService:
except TranslationError:
raise
except Exception as e:
logger.error(f"Document translation failed: {job_uuid}. Error: {str(e)}")
logger.error(f"Enhanced document translation failed: {job_uuid}. Error: {str(e)}")
raise TranslationError(f"文件翻譯失敗: {str(e)}")
def _calculate_job_cost(self, job_id: int) -> float:
"""計算任務總成本"""
from app import db
from sqlalchemy import func
from app.models.stats import APIUsageStats
total_cost = db.session.query(
func.sum(APIUsageStats.cost)