5th_fix excel problem

This commit is contained in:
beabigegg
2025-09-03 15:07:34 +08:00
parent cce3fd4925
commit 5fd0671b4f
28 changed files with 4484 additions and 97 deletions

150
test_prioritized_mapping.py Normal file
View File

@@ -0,0 +1,150 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
測試優化後的翻譯映射邏輯 - 優先使用原始DIFY翻譯
"""
import sys
import os
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
# 設定編碼
sys.stdout.reconfigure(encoding='utf-8')
from pathlib import Path
from app import create_app
def test_prioritized_mapping():
"""測試優化後的翻譯映射邏輯"""
print("=" * 80)
print("測試優化後的翻譯映射邏輯")
print("預期: 應該優先使用原始DIFY翻譯 (ROW 449)")
print("=" * 80)
app = create_app()
with app.app_context():
from sqlalchemy import text as sql_text
from app import db
from app.services.translation_service import ExcelParser
# 取得Excel提取的D2文字
original_file = Path(r"C:\Users\EGG\WORK\data\user_scrip\TOOL\Document_translator_V2\uploads\98158984-f335-44f5-a0b4-88fb8ccd5d78") / "original_panjit_98158984.xlsx"
if not original_file.exists():
print("❌ 測試檔案不存在")
return
parser = ExcelParser(str(original_file))
segments = parser.extract_text_segments()
d2_extracted = None
for segment in segments:
if "WB inline" in segment:
d2_extracted = segment
break
if not d2_extracted:
print("❌ 沒有找到D2相關內容")
return
print(f"1. Excel提取的D2文字:")
print(f" {repr(d2_extracted)}")
# 2. 測試新的聯合查詢邏輯
print(f"\n2. 測試新的聯合查詢邏輯")
print("-" * 60)
target_language = 'ko'
normalized_text = d2_extracted.replace('\n', ' ').replace('\r', ' ').strip()
print(f"標準化文字: {repr(normalized_text)}")
result = db.session.execute(sql_text("""
SELECT translated_text, created_at, 'exact' as match_type
FROM dt_translation_cache
WHERE source_text = :exact_text AND target_language = :lang
UNION ALL
SELECT translated_text, created_at, 'normalized' as match_type
FROM dt_translation_cache
WHERE REPLACE(REPLACE(TRIM(source_text), '\n', ' '), '\r', ' ') = :norm_text
AND target_language = :lang
AND source_text != :exact_text
ORDER BY created_at ASC
LIMIT 1
"""), {'exact_text': d2_extracted, 'norm_text': normalized_text, 'lang': target_language})
row = result.fetchone()
if row:
print(f"✅ 聯合查詢找到翻譯:")
print(f" 翻譯內容: {repr(row[0][:50])}...")
print(f" 創建時間: {row[1]}")
print(f" 匹配類型: {row[2]}")
# 檢查這是原始DIFY翻譯還是手動翻譯
if "와이어 본딩" in row[0]:
print(f" 🎯 這是原始DIFY翻譯(特徵: 와이어 본딩)")
success = True
elif "연결" in row[0]:
print(f" ✋ 這是手動補充翻譯 (特徵: 연결)")
success = False
else:
print(f" ❓ 無法判斷翻譯來源")
success = False
else:
print(f"❌ 聯合查詢沒有找到任何翻譯")
success = False
# 3. 查看所有可能的翻譯記錄
print(f"\n3. 查看所有相關的翻譯記錄 (用於對比)")
print("-" * 60)
all_result = db.session.execute(sql_text("""
SELECT id, translated_text, created_at, 'exact' as match_type
FROM dt_translation_cache
WHERE source_text = :exact_text AND target_language = :lang
UNION ALL
SELECT id, translated_text, created_at, 'normalized' as match_type
FROM dt_translation_cache
WHERE REPLACE(REPLACE(TRIM(source_text), '\n', ' '), '\r', ' ') = :norm_text
AND target_language = :lang
AND source_text != :exact_text
ORDER BY created_at ASC
"""), {'exact_text': d2_extracted, 'norm_text': normalized_text, 'lang': target_language})
all_rows = all_result.fetchall()
for i, (row_id, trans, created_at, match_type) in enumerate(all_rows, 1):
print(f"選項{i}: ROW {row_id} ({match_type}匹配, {created_at})")
print(f" 翻譯: {repr(trans[:40])}...")
if row_id == 449:
print(f" 🎯 這是原始DIFY翻譯")
elif row_id == 514:
print(f" ✋ 這是手動補充翻譯")
# 4. 結果評估
print(f"\n4. 結果評估")
print("-" * 60)
if success:
print(f"🎉 成功新邏輯正確地優先選擇了原始DIFY翻譯")
print(f" 現在重新生成韓文Excel檔案應該會使用原始翻譯")
else:
print(f"⚠️ 邏輯需要進一步調整")
print(f" 可能需要檢查SQL查詢或排序邏輯")
print(f"\n" + "=" * 80)
print("優化後映射邏輯測試完成!")
print("=" * 80)
if __name__ == "__main__":
test_prioritized_mapping()