5th_fix excel problem

This commit is contained in:
beabigegg
2025-09-03 15:07:34 +08:00
parent cce3fd4925
commit 5fd0671b4f
28 changed files with 4484 additions and 97 deletions

166
test_fixed_mapping_logic.py Normal file
View File

@@ -0,0 +1,166 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
測試修復後的翻譯映射邏輯
"""
import sys
import os
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
# 設定編碼
sys.stdout.reconfigure(encoding='utf-8')
from pathlib import Path
from app import create_app
def test_fixed_mapping_logic():
"""測試修復後的翻譯映射邏輯"""
print("=" * 80)
print("測試修復後的翻譯映射邏輯")
print("預期結果: 應該找到原始DIFY翻譯 (ROW 449)")
print("=" * 80)
app = create_app()
with app.app_context():
from sqlalchemy import text as sql_text
from app import db
from app.services.translation_service import ExcelParser
# 1. 取得Excel提取的D2文字
original_file = Path(r"C:\Users\EGG\WORK\data\user_scrip\TOOL\Document_translator_V2\uploads\98158984-f335-44f5-a0b4-88fb8ccd5d78") / "original_panjit_98158984.xlsx"
if not original_file.exists():
print("❌ 測試檔案不存在")
return
parser = ExcelParser(str(original_file))
segments = parser.extract_text_segments()
d2_extracted = None
for segment in segments:
if "WB inline" in segment:
d2_extracted = segment
break
if not d2_extracted:
print("❌ 沒有找到D2相關內容")
return
print(f"1. Excel提取的D2文字:")
print(f" {repr(d2_extracted)}")
# 2. 測試修復後的查詢邏輯
print(f"\n2. 測試修復後的查詢邏輯")
print("-" * 60)
target_language = 'ko'
# 精確匹配 (應該找到ROW 514)
print(f"步驟1: 精確匹配查詢")
result1 = db.session.execute(sql_text("""
SELECT id, translated_text, created_at
FROM dt_translation_cache
WHERE source_text = :text AND target_language = :lang
ORDER BY created_at DESC
LIMIT 1
"""), {'text': d2_extracted, 'lang': target_language})
row1 = result1.fetchone()
if row1:
print(f" ✅ 精確匹配找到: ROW {row1[0]} (時間: {row1[2]})")
print(f" 翻譯: {repr(row1[1][:40])}...")
else:
print(f" ❌ 精確匹配失敗")
# 標準化匹配 (應該找到ROW 449)
print(f"\n步驟2: 標準化匹配查詢")
normalized_text = d2_extracted.replace('\n', ' ').replace('\r', ' ').strip()
print(f" 標準化文字: {repr(normalized_text)}")
result2 = db.session.execute(sql_text("""
SELECT id, translated_text, created_at
FROM dt_translation_cache
WHERE REPLACE(REPLACE(TRIM(source_text), '\n', ' '), '\r', ' ') = :text
AND target_language = :lang
ORDER BY created_at ASC
LIMIT 1
"""), {'text': normalized_text, 'lang': target_language})
row2 = result2.fetchone()
if row2:
print(f" ✅ 標準化匹配找到: ROW {row2[0]} (時間: {row2[2]})")
print(f" 翻譯: {repr(row2[1][:40])}...")
if row2[0] == 449:
print(f" 🎯 太好了找到原始DIFY翻譯 (ROW 449)")
else:
print(f" ⚠️ 不是原始DIFY翻譯")
else:
print(f" ❌ 標準化匹配也失敗")
# 3. 模擬完整映射邏輯
print(f"\n3. 模擬完整映射邏輯")
print("-" * 60)
# 模擬修復後的查詢邏輯
result = db.session.execute(sql_text("""
SELECT translated_text
FROM dt_translation_cache
WHERE source_text = :text AND target_language = :lang
ORDER BY created_at DESC
LIMIT 1
"""), {'text': d2_extracted, 'lang': target_language})
row = result.fetchone()
# 如果精確匹配失敗,嘗試標準化匹配
if not row:
normalized_text = d2_extracted.replace('\n', ' ').replace('\r', ' ').strip()
result = db.session.execute(sql_text("""
SELECT translated_text
FROM dt_translation_cache
WHERE REPLACE(REPLACE(TRIM(source_text), '\n', ' '), '\r', ' ') = :text
AND target_language = :lang
ORDER BY created_at ASC
LIMIT 1
"""), {'text': normalized_text, 'lang': target_language})
row = result.fetchone()
print(f" 使用標準化匹配")
else:
print(f" 使用精確匹配")
if row and row[0]:
print(f" ✅ 最終找到翻譯: {repr(row[0][:50])}...")
# 檢查這是否為原始DIFY翻譯的特徵
if "와이어 본딩" in row[0] or "처리 속도" in row[0]:
print(f" 🎯 這是原始DIFY翻譯")
print(f" 特徵: 包含 '와이어 본딩''처리 속도'")
elif "연결" in row[0] and "단축" in row[0]:
print(f" ✋ 這是手動補充翻譯")
print(f" 特徵: 包含 '연결''단축'")
else:
print(f" ❓ 無法判斷翻譯來源")
else:
print(f" ❌ 最終也沒找到翻譯")
# 4. 建議下一步
print(f"\n4. 建議下一步")
print("-" * 60)
if row2 and row2[0] == 449:
print(f"✅ 修復成功系統現在能找到原始DIFY翻譯")
print(f" 建議: 重新生成韓文翻譯檔案應該會使用原始DIFY翻譯")
else:
print(f"⚠️ 修復不完全,還需要進一步調整")
print(f" 可能需要檢查SQL語法或邏輯")
print(f"\n" + "=" * 80)
print("修復後映射邏輯測試完成!")
print("=" * 80)
if __name__ == "__main__":
test_fixed_mapping_logic()