
這是一份專為 Cursor (或任何 AI 輔助編碼工具) 設計的 Spec-

Driven Development (SDD) 文件。

這份文件的撰寫風格是高度技術導向的，我將之前 PRD 中的業務邏輯轉化為精確的「偽代碼
（Pseudo-code）」與「數據定義」，讓 Cursor 可以直接讀取並生成高品質的 Python 程式碼。

你可以直接複製下方的 markdown 內容，存成 DIT_Analysis_Spec.md，然後拖進 Cursor 的對
話框中。

給您的行動指南

1. 複製內容：將下方分隔線內的內容存為 .md 檔。

2. 開啟 Cursor：打開 Cursor，按 Ctrl+I (Composer) 或 Ctrl+L (Chat)。

3. 輸入指令：輸入「@DIT_Analysis_Spec.md 請根據這份 Spec 文件，幫我撰寫 Python 程
式碼，使用 Pandas 進行數據處理。」

DIT Analysis System - Specification Document

1. Project Overview

Project Name: DIT (Design-In Tracking) Intelligent Analytics Module

Goal: To parse a specific sales CSV report and generate actionable insights based on

rule-based logic.

Tech Stack: Python 3.9+, Pandas, Numpy.

Input: CSV file (DIT report.csv).

Output: JSON format actionable insights (Action Cards) and statistical summary.

2. Data Structure (Input Schema)

The input is a CSV file. The system must handle the following key columns. Note that column

names may contain leading/trailing spaces, so stripping whitespace is required during pre-

processing.

Column Name Data

Type

Description

Created Date Date Project creation date.

Account Name String Customer name.

Stage String Current status (e.g., "Negotiation", "Opportunity Lost",

"Won").

1/8

Column Name Data

Type

Description

Application String Primary application field (may be empty, needs fallback).

Application
Detail

String Secondary application info (fallback for Application).

Opportunity Name String Project name (fallback for Application).

Total Price Float Potential Revenue (EAU * Price).

Approved date Date The date when the technical design was approved.

Lost Type String Reason for loss (e.g., "Spec", "Price").

3. Data Pre-processing Rules

1. Column Cleaning: Strip whitespace from all column headers.

2. Date Parsing: Convert Created Date, Approved date, Close Date to datetime objects.

Handle errors (errors='coerce').

3. Numeric Conversion: Convert Total Price to numeric, filling NaN with 0.

4. Application Derivation:

Create a new column Derived_Application.

Logic: If Application is null, use Application Detail. If that is null, use

Opportunity Name. If that is null, use "Unknown".

5. Status Flags:

Is_Lost: True if Stage contains "Lost".

Is_Active: True if Stage is NOT "Lost" (includes "Negotiation", "Won", "Mass

Production").

4. Feature Specifications (Core Logic)

Feature 6.2: High Value Resource Allocation (Resource Allocation Advisor)

Objective: Identify high-potential application areas where the win rate is surprisingly low.

2/8

Logic Steps:

1. Group data by Derived_Application.

2. Calculate metrics for each group:

Sum_Total_Price: Sum of Total Price.

Win_Rate: Mean of Is_Active (Simulation of Win Rate).

3. Filter Logic (The Trigger):

Sort groups by Sum_Total_Price descending.

Identify the Top 20% of applications by value.

Within this Top 20%, select applications where Win_Rate < 10% (0.1).

4. Output Generation:

Return a list of dictionary objects containing: {Title, Application, Money,

WinRate, Suggestion}.

Suggestion Template: "High potential market ($[Money]), but current win rate

is low ([WinRate]%). Suggest assigning senior FAE to top accounts."

Feature 6.3: Stagnant Deal Alert (Sales Cycle Booster)

Objective: Alert on deals that have passed technical approval but are stuck in

negotiation.

3/8

Logic Steps:

1. Filter dataset for rows where:

Stage == "Negotiation" (Case insensitive).

Approved date is NOT Null (NaT).

2. Calculate Days_Since_Approved:

Formula: Current_Date - Approved date.

3. Filter Logic (The Trigger):

Select rows where Days_Since_Approved > 60.

4. Output Generation:

Return a list of dictionary objects containing: {Title, Account, Project,

ApprovedDate, Days_Pending, Suggestion}.

Suggestion Template: "Customer [Account] project [Project] approved for

[Days] days but not yet ordered. Check for price/inventory issues."

5. Class Architecture Suggestion

class DITAnalyzer:
 def __init__(self, file_path):
 self.df = None
 self.load_data(file_path)

 def load_data(self, file_path):
 # Implementation of Section 3 (Pre-processing)
 pass

 def get_high_value_allocation_suggestions(self):
 # Implementation of Feature 6.2
 pass

 def get_stagnant_deal_alerts(self, threshold_days=60):
 # Implementation of Feature 6.3
 pass

 def run_full_analysis(self):
 # Aggregates all insights
 return {
 "allocation_suggestions": self.get_high_value_allocation_suggestions(),
 "stagnant_alerts": self.get_stagnant_deal_alerts()
 }

4/8

6. Implementation Notes for Developer (Cursor)

Library: Use pandas for all data manipulation.

Error Handling: Ensure the code does not crash if Approved date column is entirely

empty or missing; simply return an empty list for Feature 6.3 in that case.

Simulation: Since the current dataset might be small or lack specific dates, allow a

reference_date parameter in methods (default to datetime.now()) to calculate date

differences accurately.

產品需求文件 (PRD) - DIT 智能分析系統

文件名稱：DIT Intelligent Analytics Module (DIT 智能分析模組) 版本：v1.0 日期：2025-12-12

狀態：已定案 (Approved)

1. 專案概述 (Project Overview)

1.1 背景

目前的 Design-In Tracking (DIT) 報表包含大量未被挖掘的價值。業務主管與 PM 需要一套自動
化工具，能從 Excel/CSV 報表中識別出「高價值但低勝率」的市場機會，以及「卡關過久」的
風險案件。

1.2 目標

開發一個 Python 分析模組，讀取 DIT CSV 原始檔，透過規則基礎（Rule-Based）演算法，自
動輸出具體的「行動建議卡片（Action Cards）」。

1.3 範圍 (Scope)

本階段 (v1.0) 專注於後端邏輯與數據處理，核心功能為：

1. 資料清洗與預處理。

2. 高潛力市場偵測 (Feature 6.2)。

3. 呆滯案件警示 (Feature 6.3)。

2. 資料需求 (Data Requirements)

系統需讀取 .csv 格式檔案，並處理以下關鍵欄位。若欄位缺失或格式錯誤，需進行防呆處理。

5/8

欄位名稱 (Header) 資料型態 必填 說明

Account Name String Yes 客戶名稱

Stage String Yes 專案階段 (e.g., Negotiation, Opportunity Lost)

Application String No 應用領域 (若為空，需依照下方邏輯進行替補)

Application Detail String No 應用細節 (Application 的第一替補)

Opportunity Name String Yes 專案名稱 (Application 的第二替補)

Total Price Float Yes 預估總金額 (EAU * Price)，需處理非數字字元

Approved date Date No 技術承認通過日期，用於計算呆滯天數

Created Date Date Yes 立案日期

3. 功能需求 (Functional Requirements)

3.1 資料預處理模組 (Data Preprocessor)

欄位正規化：移除欄位名稱前後的空白。

應用領域推導 (Derived Application)：

建立新欄位 derived_app。

邏輯：優先使用 Application；若為空，使用 Application Detail；若仍為空，使
用 Opportunity Name；最後補上 "Unknown"。

狀態標記：

is_lost: 當 Stage 包含 "Lost" 或 "Design-Lost" 時為 True。

is_active: 當 is_lost 為 False 時為 True (視為潛在 Win)。

3.2 核心功能：高價值資源分配建議 (Feature 6.2)

商業目的：識別「金礦區」，即金額龐大但目前我方勝率極低的領域。

6/8

觸發邏輯 (Trigger Logic)：

1. 將資料依照 derived_app 分組。

2. 計算該分組的總金額 (sum_total_price) 與 存活率/勝率 (win_rate = is_active 的
平均值)。

3. 篩選條件：

總金額排名在全體的前 20%。

且 存活率 (win_rate) 低於 10% (0.1)。

輸出格式 (Action Card)：

標題：高潛力市場攻堅提醒

內容：[App名稱] 領域潛在商機巨大 ($[金額])，但目前勝率偏低 ([勝率]%)。

建議行動：建議指派資深 FAE 介入該領域的前三大案子（如 [該組最大的 Account

Name]）。

3.3 核心功能：銷售週期推進/呆滯警示 (Feature 6.3)

商業目的：針對技術已承認但商務未轉單的案子進行催單。

觸發邏輯 (Trigger Logic)：

1. 篩選 Stage 為 "Negotiation" 的案件。

2. 篩選 Approved date 不為空值 的案件。

3. 計算 days_pending = (當前日期 - Approved date)。

4. 篩選條件：

days_pending > 60 天。

輸出格式 (Action Card)：

標題：呆滯案件喚醒 (Stagnant Deal Alert)

內容：客戶 [Account Name] 的 [Project Name] 已承認超過 [月份數] 個月，仍未轉
單。

建議行動：請業務確認是否為「價格」或「庫存」問題。若無下文，應要求客戶給出
Forecast。

4. 系統架構與實作建議 (System Architecture)

建議採用物件導向 (OOP) 結構設計，以利後續擴充圖表功能。

7/8

class DITAnalyzer:
 def __init__(self, file_path):
 """初始化並載入 CSV 資料"""
 pass

 def _preprocess(self):
 """執行資料清洗與型態轉換"""
 pass

 def analyze_resource_allocation(self, top_percent=0.2, low_win_rate=0.1):
 """執行 Feature 6.2 邏輯"""
 pass

 def analyze_stagnant_deals(self, threshold_days=60):
 """執行 Feature 6.3 邏輯"""
 pass

 def generate_report(self):
 """彙整所有建議並輸出 JSON 或 Dictionary"""
 pass

5. 驗收標準 (Acceptance Criteria)

1. 容錯性：程式碼在讀取含有空值 (NaN) 或格式錯誤日期的 CSV 時不應崩潰（Crash）。

2. 準確性：對於 Feature 6.3，若 Approved date 空白，該筆資料應被自動忽略，不可報
錯。

3. 可讀性：輸出的建議內容需為繁體中文，且數值需包含千分位符號 (e.g., $300,000)。

給您的下一步 (Next Step)

現在您手上有兩份文件：

1. Spec 文件 (.md)：給 Cursor 看的，用來生成程式碼。

2. PRD 文件 (.md)：給您自己與團隊看的，用來確認需求與驗收成果。

請執行這個動作： 將這份 DIT_Analysis_PRD.md 存檔。打開 Cursor，將檔案拖入，並輸入以下
指令：

「請依照這份 PRD 的架構，撰寫完整的 Python 程式碼。請建立一個 DITAnalyzer 類別，
並包含一個 main 函式來測試執行。」

這會讓您立即得到一個可執行的程式原型。我們不空談，直接看結果。

8/8

