feat: DITAnalyzer module - Feature 6.2 & 6.3 implementation

- DITAnalyzer class with data preprocessing
- Feature 6.2: High value resource allocation analysis
- Feature 6.3: Stagnant deal alerts
- Flask API routes for CSV upload and analysis
- Test suite with sample data
This commit is contained in:
2025-12-12 13:12:31 +08:00
parent 177e8e8fe9
commit 44cd2f8e76
6 changed files with 637 additions and 7 deletions

323
services/dit_analyzer.py Normal file
View File

@@ -0,0 +1,323 @@
"""
DIT 智能分析模組
解析 DIT CSV 報表,產出行動建議卡片 (Action Cards)
"""
import pandas as pd
import numpy as np
from datetime import datetime
from typing import List, Dict, Optional, Any
class DITAnalyzer:
"""DIT 報表分析器"""
def __init__(self, file_path: Optional[str] = None, dataframe: Optional[pd.DataFrame] = None):
"""
初始化分析器
Args:
file_path: CSV 檔案路徑
dataframe: 或直接傳入 DataFrame
"""
self.df: Optional[pd.DataFrame] = None
self.processed: bool = False
if file_path:
self.load_data(file_path)
elif dataframe is not None:
self.df = dataframe.copy()
self._preprocess()
def load_data(self, file_path: str) -> 'DITAnalyzer':
"""
載入 CSV 資料
Args:
file_path: CSV 檔案路徑
Returns:
self (支援鏈式呼叫)
"""
try:
self.df = pd.read_csv(file_path, encoding='utf-8')
except UnicodeDecodeError:
self.df = pd.read_csv(file_path, encoding='cp950')
except Exception as e:
raise DITAnalyzerError(f"無法載入檔案: {e}")
self._preprocess()
return self
def _preprocess(self) -> None:
"""執行資料清洗與預處理"""
if self.df is None:
raise DITAnalyzerError("尚未載入資料")
# 1. 欄位清洗:移除欄位名稱前後空白
self.df.columns = self.df.columns.str.strip()
# 2. 日期轉換
date_columns = ['Created Date', 'Approved date', 'Close Date']
for col in date_columns:
if col in self.df.columns:
self.df[col] = pd.to_datetime(self.df[col], errors='coerce')
# 3. 數值轉換Total Price
if 'Total Price' in self.df.columns:
self.df['Total Price'] = pd.to_numeric(
self.df['Total Price'].astype(str).str.replace(',', ''),
errors='coerce'
).fillna(0)
# 4. 應用領域推導 (Derived_Application)
self.df['Derived_Application'] = self._derive_application()
# 5. 狀態標記
if 'Stage' in self.df.columns:
self.df['Is_Lost'] = self.df['Stage'].str.contains(
'Lost', case=False, na=False
)
self.df['Is_Active'] = ~self.df['Is_Lost']
else:
self.df['Is_Lost'] = False
self.df['Is_Active'] = True
self.processed = True
def _derive_application(self) -> pd.Series:
"""
推導應用領域
優先順序: Application → Application Detail → Opportunity Name → "Unknown"
"""
def get_app(row):
# 檢查 Application
if 'Application' in row.index:
val = row.get('Application')
if pd.notna(val) and str(val).strip():
return str(val).strip()
# 檢查 Application Detail
if 'Application Detail' in row.index:
val = row.get('Application Detail')
if pd.notna(val) and str(val).strip():
return str(val).strip()
# 檢查 Opportunity Name
if 'Opportunity Name' in row.index:
val = row.get('Opportunity Name')
if pd.notna(val) and str(val).strip():
return str(val).strip()
return "Unknown"
return self.df.apply(get_app, axis=1)
def analyze_resource_allocation(
self,
top_percent: float = 0.2,
low_win_rate: float = 0.1
) -> List[Dict[str, Any]]:
"""
Feature 6.2: 高價值資源分配建議
找出「金礦區」— 金額大但勝率低的應用領域
Args:
top_percent: 金額排名前 X% (預設 20%)
low_win_rate: 勝率門檻 (預設 10%)
Returns:
Action Cards 列表
"""
if not self.processed:
raise DITAnalyzerError("資料尚未預處理")
# 依 Derived_Application 分組
grouped = self.df.groupby('Derived_Application').agg({
'Total Price': 'sum',
'Is_Active': 'mean',
'Account Name': lambda x: x.value_counts().head(3).index.tolist()
}).reset_index()
grouped.columns = ['Application', 'Sum_Total_Price', 'Win_Rate', 'Top_Accounts']
# 排序並取 Top 20%
grouped = grouped.sort_values('Sum_Total_Price', ascending=False)
top_n = max(1, int(len(grouped) * top_percent))
top_apps = grouped.head(top_n)
# 篩選勝率低於門檻的
low_win_apps = top_apps[top_apps['Win_Rate'] < low_win_rate]
# 產出 Action Cards
action_cards = []
for _, row in low_win_apps.iterrows():
money_formatted = f"${row['Sum_Total_Price']:,.0f}"
win_rate_pct = f"{row['Win_Rate'] * 100:.1f}"
top_accounts = ', '.join(row['Top_Accounts'][:3]) if row['Top_Accounts'] else ''
action_cards.append({
"type": "resource_allocation",
"title": "高潛力市場攻堅提醒",
"application": row['Application'],
"money": money_formatted,
"money_raw": row['Sum_Total_Price'],
"win_rate": win_rate_pct,
"win_rate_raw": row['Win_Rate'],
"top_accounts": row['Top_Accounts'][:3] if row['Top_Accounts'] else [],
"suggestion": (
f"{row['Application']} 領域潛在商機巨大 ({money_formatted})"
f"但目前勝率偏低 ({win_rate_pct}%)。"
f"建議指派資深 FAE 介入該領域的前三大案子 (如 {top_accounts})。"
)
})
return action_cards
def analyze_stagnant_deals(
self,
threshold_days: int = 60,
reference_date: Optional[datetime] = None
) -> List[Dict[str, Any]]:
"""
Feature 6.3: 呆滯案件警示
針對技術已承認但商務卡關的案子進行催單
Args:
threshold_days: 呆滯天數門檻 (預設 60 天)
reference_date: 參考日期 (預設為當前日期)
Returns:
Action Cards 列表
"""
if not self.processed:
raise DITAnalyzerError("資料尚未預處理")
if reference_date is None:
reference_date = datetime.now()
# 檢查必要欄位
if 'Approved date' not in self.df.columns:
return []
# 篩選條件
mask = (
(self.df['Stage'].str.contains('Negotiation', case=False, na=False)) &
(self.df['Approved date'].notna())
)
filtered = self.df[mask].copy()
if filtered.empty:
return []
# 計算呆滯天數
filtered['Days_Since_Approved'] = (
reference_date - filtered['Approved date']
).dt.days
# 篩選超過門檻的
stagnant = filtered[filtered['Days_Since_Approved'] > threshold_days]
# 產出 Action Cards
action_cards = []
for _, row in stagnant.iterrows():
days = int(row['Days_Since_Approved'])
months = days // 30
account = row.get('Account Name', 'Unknown')
project = row.get('Opportunity Name', 'Unknown')
approved_date = row['Approved date'].strftime('%Y-%m-%d') if pd.notna(row['Approved date']) else 'N/A'
action_cards.append({
"type": "stagnant_deal",
"title": "呆滯案件喚醒",
"account": account,
"project": project,
"approved_date": approved_date,
"days_pending": days,
"months_pending": months,
"suggestion": (
f"客戶 {account}{project} 已承認超過 {months} 個月 ({days} 天),仍未轉單。"
f"請業務確認是否為「價格」或「庫存」問題。若無下文,應要求客戶給出 Forecast。"
)
})
# 依天數排序 (最久的在前)
action_cards.sort(key=lambda x: x['days_pending'], reverse=True)
return action_cards
def generate_report(
self,
top_percent: float = 0.2,
low_win_rate: float = 0.1,
threshold_days: int = 60
) -> Dict[str, Any]:
"""
彙整所有分析結果
Args:
top_percent: 高價值分析的金額門檻
low_win_rate: 高價值分析的勝率門檻
threshold_days: 呆滯分析的天數門檻
Returns:
完整分析報告 (Dict)
"""
if not self.processed:
raise DITAnalyzerError("資料尚未預處理")
allocation_suggestions = self.analyze_resource_allocation(top_percent, low_win_rate)
stagnant_alerts = self.analyze_stagnant_deals(threshold_days)
# 統計摘要
summary = self._generate_summary()
return {
"generated_at": datetime.now().isoformat(),
"summary": summary,
"action_cards": {
"resource_allocation": allocation_suggestions,
"stagnant_deals": stagnant_alerts
},
"total_alerts": len(allocation_suggestions) + len(stagnant_alerts)
}
def _generate_summary(self) -> Dict[str, Any]:
"""產生統計摘要"""
total_records = len(self.df)
total_value = self.df['Total Price'].sum()
active_count = self.df['Is_Active'].sum()
lost_count = self.df['Is_Lost'].sum()
# 各階段統計
stage_stats = {}
if 'Stage' in self.df.columns:
stage_stats = self.df['Stage'].value_counts().to_dict()
# 應用領域 Top 5
app_stats = self.df.groupby('Derived_Application')['Total Price'].sum()
top_apps = app_stats.nlargest(5).to_dict()
return {
"total_records": total_records,
"total_value": f"${total_value:,.0f}",
"total_value_raw": total_value,
"active_count": int(active_count),
"lost_count": int(lost_count),
"win_rate": f"{(active_count / total_records * 100):.1f}%" if total_records > 0 else "0%",
"stage_distribution": stage_stats,
"top_applications": {k: f"${v:,.0f}" for k, v in top_apps.items()}
}
def get_dataframe(self) -> pd.DataFrame:
"""取得處理後的 DataFrame"""
if self.df is None:
raise DITAnalyzerError("尚未載入資料")
return self.df.copy()
class DITAnalyzerError(Exception):
"""DIT 分析器錯誤"""
pass