Add Python scripts for Llama API chat clients, endpoint testing, and quick tests. Include documentation (README, CONTRIBUTING, 操作指南), license, and .gitignore. Supports multiple endpoints and models for OpenAI-compatible Llama API usage.
111 lines
3.6 KiB
Python
111 lines
3.6 KiB
Python
import requests
|
|
import json
|
|
from datetime import datetime
|
|
|
|
# API 配置
|
|
API_KEY = "paVrIT+XU1NhwCAOb0X4aYi75QKogK5YNMGvQF1dCyo="
|
|
BASE_URL = "https://llama.theaken.com/v1"
|
|
|
|
def test_endpoints():
|
|
"""測試不同的 API 端點和模型"""
|
|
|
|
print("="*60)
|
|
print(f"Llama API 測試 - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
|
print("="*60)
|
|
|
|
headers = {
|
|
"Authorization": f"Bearer {API_KEY}",
|
|
"Content-Type": "application/json"
|
|
}
|
|
|
|
# 測試配置
|
|
tests = [
|
|
{
|
|
"name": "GPT-OSS-120B",
|
|
"model": "gpt-oss-120b",
|
|
"prompt": "Say hello in one word"
|
|
},
|
|
{
|
|
"name": "DeepSeek-R1-671B",
|
|
"model": "deepseek-r1-671b",
|
|
"prompt": "Say hello in one word"
|
|
},
|
|
{
|
|
"name": "Qwen3-Embedding-8B",
|
|
"model": "qwen3-embedding-8b",
|
|
"prompt": "Say hello in one word"
|
|
}
|
|
]
|
|
|
|
success_count = 0
|
|
|
|
for test in tests:
|
|
print(f"\n[測試 {test['name']}]")
|
|
print("-"*40)
|
|
|
|
data = {
|
|
"model": test["model"],
|
|
"messages": [
|
|
{"role": "user", "content": test["prompt"]}
|
|
],
|
|
"temperature": 0.5,
|
|
"max_tokens": 20
|
|
}
|
|
|
|
try:
|
|
# 使用較短的超時時間
|
|
response = requests.post(
|
|
f"{BASE_URL}/chat/completions",
|
|
headers=headers,
|
|
json=data,
|
|
timeout=15
|
|
)
|
|
|
|
print(f"HTTP 狀態: {response.status_code}")
|
|
|
|
if response.status_code == 200:
|
|
result = response.json()
|
|
if 'choices' in result:
|
|
content = result['choices'][0]['message']['content']
|
|
print(f"[SUCCESS] 成功回應: {content}")
|
|
success_count += 1
|
|
else:
|
|
print("[ERROR] 回應格式錯誤")
|
|
elif response.status_code == 502:
|
|
print("[ERROR] 502 Bad Gateway - 伺服器無法回應")
|
|
elif response.status_code == 401:
|
|
print("[ERROR] 401 Unauthorized - API 金鑰可能錯誤")
|
|
elif response.status_code == 404:
|
|
print("[ERROR] 404 Not Found - 模型或端點不存在")
|
|
else:
|
|
print(f"[ERROR] 錯誤 {response.status_code}")
|
|
if not response.text.startswith('<!DOCTYPE'):
|
|
print(f"詳情: {response.text[:200]}")
|
|
|
|
except requests.exceptions.Timeout:
|
|
print("[TIMEOUT] 請求超時 (15秒)")
|
|
except requests.exceptions.ConnectionError as e:
|
|
print(f"[CONNECTION ERROR] 無法連接到伺服器")
|
|
except Exception as e:
|
|
print(f"[UNKNOWN ERROR]: {str(e)[:100]}")
|
|
|
|
# 總結
|
|
print("\n" + "="*60)
|
|
print(f"測試結果: {success_count}/{len(tests)} 成功")
|
|
|
|
if success_count == 0:
|
|
print("\n診斷資訊:")
|
|
print("• 網路連接: 正常 (可 ping 通)")
|
|
print("• API 端點: https://llama.theaken.com/v1")
|
|
print("• 錯誤類型: 502 Bad Gateway")
|
|
print("• 可能原因: 後端 API 服務暫時離線")
|
|
print("\n建議行動:")
|
|
print("1. 稍後再試 (建議 10-30 分鐘後)")
|
|
print("2. 聯繫 API 管理員確認服務狀態")
|
|
print("3. 檢查是否有服務維護公告")
|
|
else:
|
|
print(f"\n[OK] API 服務正常運作中!")
|
|
print(f"[OK] 可使用的模型數: {success_count}")
|
|
|
|
if __name__ == "__main__":
|
|
test_endpoints() |